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Abstract

In this paper a theoretical framework for Bayesian adaptive learning of discrete HMM and

semi�continuous one with Gaussian mixture state observation densities is presented� Corre�

sponding to the well�known Baum�Welch and segmental k�means algorithms respectively for

HMM training� formulations of MAP �maximum a posteriori� and segmental MAP estima�

tion of HMM parameters are developed� Furthermore� a computationally e�cient method

of the segmental quasi�Bayes estimation for semi�continuous HMM is also presented� The

important issue of prior density estimation is discussed and a simpli�ed method of moment

estimate is given� The method proposed in this paper will be applicable to some prob�

lems in HMM training for speech recognition such as sequential or batch training� model

adaptation� and parameter smoothing� etc�
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� Introduction

The use of hidden Markov models �HMMs� for speech recognition has become increasingly

popular in the past few years� The widespread popularity of the HMM framework can

mainly be attributed to the existence of the e�cient training procedures for HMM� Among

these algorithms� the Baum�Welch 
�� �� �
� 	�� 	�� and segmental k�means 
��� 	��� are two

most commonly used procedures for the estimation of HMM parameters� By assuming the

HMM parameters to be �xed but unknown� these parameter estimators have been derived

purely from the training observation sequences �sample information� plus some constraints

that these parameters must obey without any prior information included� There may be

many cases in which the prior information about the HMM parameters is available� Such

information may� for example� come from subject matter considerations and�or previous

experience� If indeed such information is available� the investigator may wish to use it in

addition to the sample information in making inference about the HMM parameters� As

is well known� the Bayesian inference approach provides a convenient method for combin�

ing sample and prior information� By assuming the HMM parameters to be random� this

prior information is expressed in the form of a prior distribution� which is combined with a

likelihood function via Bayes� theorem to form a posterior distribution on which inferences

are based� Consequently� the �exibility in incorporating varying amount of prior informa�

tion makes the Bayesian inference procedure successful in handling the problem of limited

amount of relevant sampling data as well as applicable to certain problems of HMM training

for speech recognition such as sequential or batch training� model adaptation� parameter

smoothing and so on� It is this approach that this paper focuses on�

The idea of this kind of adaptive Bayesian learning for HMM is not a new one� By

assuming that the set of vectors assigned to each prototype is modeled by a diagonal multi�

variate Gaussian density� of which the prototype is the mean� Ferretti and Scarci 
	
� used

Bayesian estimation of mean vectors to build speaker�speci�c codebooks in an DHMM �Dis�

crete Hidden Markov Model� framework� Originated in Brown et al�s work with Bayesian

estimation for speaker adaptation of CDHMM �Continuous Density Hidden Markov Model�

parameters in a connected digit recognizer 
��� recently Lee et al 
	�� investigated various

Bayesian training schemes for the speaker adaptation in isolated word recognition where

the parameters of multivariate Gaussian state observation density with diagonal covariance
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matrix were adapted� and the same Bayesian adaptation procedure can be easily extended

to cope with the case of a multivariate Gaussian density with a full covariance matrix��

Later Gauvain et al 
	�� managed to extend Bayesian adaptation to handle parameters of

mixture of gaussian densities with diagonal covariance matrix� They proposed to use a prior

density which is the product of a Dirichlet density and gamma�normal densities� By further

assuming two regularity conditions they used the EM algorithm 
�� to iteratively �nd the

mode of the posterior density� This very special assumption of regularity conditions may

limit the ability of this kind of prior density to represent prior information adequately� As

a matter of fact� EM algorithm needs no regularity condition�

So far� Bayesian adaptive learning in HMM training applies to only the adaptation of

either the codebook in the DHMM framework or the state observation densities in CDHMM�

Nothing about adaptation of the initial state distribution� the transition matrix or the

state observation distribution in DHMM has been reported in the literature� However�

it is recently learned from C� H� Lee that they have extended the MAP learning to all

HMM parameters with general mixture Gaussian state observation densities 
	��� Hence

this paper will only focus on the problem of Bayesian adaptive learning for DHMM and

Semi�continuous HMM �SCHMM��

The rest of the paper is organized as follows� After a brief introduction of the concept of

the Bayesian point estimation in Section �� the formulation of MAP estimates for DHMM

and SCHMM are derived respectively in Section � and �� In Section �� the problem of

segmental MAP estimates for HMM are discussed and a computationally e�cient method

of segmental quasi�Bayes estimation for SCHMM is presented� The important issue of prior

density estimation is discussed in Section � and a simpli�ed method of moment estimate is

given� Finally the �ndings are summarized in Section ��

� Bayesian Point Estimation

In the Bayesian approach� if � is the unknown parameter vector to be estimated from a se�

quence of n observations x�� x�� � � � � xn� it is assumed that an investigator�s prior knowledge

about � can be summarized in a prior probability density function �PDF� p���� with � � ��

�In Lee et al ����� Eq����	
 ��� � ����� is not a MAP estimate of ��� It is the Bayesian point estimate of

�� with the quadratic loss function� The true MAP estimate of �� must be ������� 
��
 �
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where � denotes an admissible region of the parameter space�� By the use of Bayes� theo�

rem� this information can be combined with the sample density function p�x�� x�� � � � � xnj��

�which is the likelihood function if viewed as a function of �� to yield a posterior PDF

p��jx�� x�� � � � � xn�� Such a PDF can be used to make inferences about the parameter ��

p��jx�� x�� � � � � xn� �
p�x�� x�� � � � � xnj��p���R

� p�x�� x�� � � � � xnj��p���d�
�	�

Furthermore� if an investigator has a loss function which re�ects the cost of an incorrect

estimation� it is generally possible to obtain an estimate� say ��� which minimizes the poste�

rior expected loss� Under a wide range of conditions� �� will also be a function of the sample

observations which minimizes the average risk� In this latter case� �� is formally termed the

Bayesian point estimator relative to the given loss function and prior PDF employed� It is

well known that the mean of the posterior PDF is the Bayesian point estimator given that

the loss function is quadratic while the mode of the posterior PDF is the one usually called

modal or MAP �maximum a posteriori� estimator corresponding to the special zero�one

loss function structure� Both of them are reasonable candidate of the point estimate of

� 
	�� �� ���� In particular� when the prior PDF p��� is constant over the parameter space

�� the MAP estimator is the same as a classical maximum likelihood �ML� estimator�

� MAP Estimate for Discrete HMM

In this section we will discuss the MAP estimate for discrete HMM� Consider an N�state

DHMM with parameter vector � � ���A�B�� where �t � 
��� ��� � � � � �N � is the initial state

probability vector� A � 
aij �� i� j � 	� �� � � � � N � is the transition probability matrix� and

B � 
bjk�� j � 	� � � � � N� k � 	� � � � �K� bjk is the probability of observing symbol vk in state

j� The observation symbol set is denoted as V � fv�� v�� � � � � vKg�

For simplicity� prior independence of ��A and B is assumed� then the prior density for

� is�

g��� � g��� � g�A� � g�B� ���

�In denoting the prior PDF p��
� we do not explicitly show the parameters of the prior PDF which are

assigned values by the investigator� Also note that for simplicity� in this paper we will use the convention

that both the random variable and the value it may assume are denoted with the same symbol� Since it is

not likely to cause confusion�
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Such an independence assumption may not be unduly restrictive� If the rows of �� A and

B are assumed independently distributed a priori� and their densities assume the form

of Dirichlet distributions �sometimes called multivariate beta PDF�� then g��� becomes a

special case of the matrix beta PDF 
����

g��� � Kc �
NY
i��

f��i��i � �
NY
j��

a
�ij��
ij � � �

KY
k��

b�ik��ik �g ���

where Kc is a normalizing factor� f�ig� f�ijg� f�ikg are sets of positive parameters for the

prior PDF of �� A� B assigned by the investigator to represent his prior knowledge of the

parameters�

Assuming a prior distribution as a Dirichlet one is not without criticism 
	�� but it does

lead to a tractable analysis and a development of subjective elicitation procedures had been

reported 
�� ��� Also note that the �extended natural conjugate� prior distribution which

admits non�zero correlation between the rows of A� B� and � will result in complicated

formulas for the moments� etc� 
����

For an observation sequence x � �x�� x�� � � � � xT �� let s � �s�� s�� � � � � sT � be the unob�

served state sequence� the probability of observing the state sequence s is simply

P �sj��A� � �s�

TY
t��

ast��st ���

The joint probability for observing the sequence x and s can be evaluated as

P �x� sj�� � �s�bs��x��
TY
t��

ast��stbst�xt� ���

The probability for observing the sequence x is then measured by

P �xj�� �
X
s

P �x� sj�� ���

where the summation is taken over all possible state sequences�

Given the observation sequence x and the prior density g���� the MAP estimate of �

can be obtained by

�MAP � argmax
�

P �xj��g��� ���

By viewing it as a missing data problem� as noted by Dempster et al 
��� the EM �expectation�

maximization� algorithm can be easily modi�ed to produce this MAP estimate�
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In the current situation� let y � �x� s� denote the complete data� where x is the observed

data and s the missing one� Then the complete�data log�likelihood is

logP �x� sj�� � log �s� �
TX
t��

log ast��st �
TX
t��

log bst�xt� ���

De�ne an auxiliary function R���j�� � Q���j�� � log g����� where Q���j�� is the auxiliary

function for the E�step in ML estimation�

Q���j�� � E
logP �x� sj���jx� �� ���

�
X
s

f
P �x� sj��

P �xj��
logP �x� sj���g �	
�

�
NX
i��

ei log ��i �
NX
i��

NX
j��

cij log �aij �
NX
j��

KX
k��

djk log �bjk �		�

where

ei � Pr�s� � ijx� �� �	��

cij �
T��X
t��

Pr�st � i� st�� � jjx� �� �	��

djk �
X

t�xt�vk

Pr�st � j� xt � vkjx� �� �	��

and these terms can be e�ciently computed by using the Forward�Backward algorithm 
����

Thus�

R���j�� � Q���j���
NX
i��

��i � 	� log ��i�
NX
i��

NX
j��

��ij � 	� log �aij�
NX
j��

KX
k��

��jk�	� log�bjk�logKc

�	��

where Kc is just a function of f�ig� f�ijg� and f�ikg� not dependent on ��� By choosing �� to

maximize R���j��� the EM iteration for the three parameter sets �� A� B is as follows��

��i �
ei � �i � 	PN

i��ei �
PN

i���i �N
i � 	� �� � � � � N �	��

�aij �
cij � �ij � 	PN

j��cij �
PN

j���ij �N
i� j � 	� �� � � � � N �	��

�bjk �
djk � �jk � 	PK

k��djk �
PK

k���jk �K
j � 	� �� � � � � N � k � 	� �� � � � �K �	��

�Strictly speaking� three conditions must be obeyed� ��
 ei��i � �� ��
 cij��ij � � and ��
 djk�	jk � ��

This is usually the case in practice� otherwise� these simple formulas cannot be derived�
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If there are multiple independent observation sequences fxwgw�������W � with xw � �x
�w	
� � � � � � x

�w	
Tw
��

to get an MAP estimate of �� one just maximizes g���
QW
w��P �xwj��� where P �xwj�� is as

de�ned in equation ���� The EM auxiliary function will then become

R���j�� � log g���� �
XW

w��
E
logP �xw� swj���jxw� �� �	��

where P �xw� swj��� is de�ned by equation ���� It is straightforward to derive the following

reestimation formulas�

��i �

PW
w��e

�w	
i � �i � 	PW

w��

PN
i��e

�w	
i �

PN
i���i �N

i � 	� �� � � � � N ��
�

�aij �

PW
w��c

�w	
ij � �ij � 	PW

w��

PN
j��c

�w	
ij �

PN
j���ij �N

i� j � 	� �� � � � � N ��	�

�bjk �

PW
w��d

�w	
jk � �jk � 	PW

w��

PK
k��d

�w	
jk �

PK
k���jk �K

j � 	� �� � � � � N � k � 	� �� � � � �K ����

where e
�w	
i � c

�w	
ij � d

�w	
jk are obtained by applying the Forward�Backward algorithm for each

observation sequence xw�

Note that when W � �� the MAP reestimation formulas approach the Baum�Welch

ones which are used to get an approximate ML estimate� Thus an asymptotical similarity

of the two estimates is demonstrated� Iterative use of these reestimation formulas will

give the estimates of the HMM parameters which correspond to a local maximum of the

posterior density� provided the iterative sequence is not trapped at some saddle point� in

which case� a small random perturbation of � away from the saddle point will hopefully set

the EM algorithm free from the saddle point� The reader is referred to the detailed account

of the convergence properties of the EM algorithm in a general setting given by Wu 
����

The choice of the initial estimates is therefore essential for �nding a �good� solution and

minimizing the number of EM iterations needed to attain a local maximum� One reasonable

choice of the initial estimates is the mode of the prior density 
�

�
��	
i �

�i � 	PN
i���i �N

i � 	� �� � � � � N ����

a
��	
ij �

�ij � 	PN
j���ij �N

i� j � 	� �� � � � � N ����

�Note again that the following three conditions must be obeyed� ��
 �i � �� ��
 �ij � �� and ��
 	jk � ��

This is usually the case in practice� otherwise� no simple formulas can be derived�
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b
��	
jk �

�jk � 	PK
k���jk �K

j � 	� �� � � � � N � k � 	� �� � � � �K ����

Another choice for initial values is the mean of the prior density�

�
��	
i �

�iPN
i���i

i � 	� �� � � � � N ����

a
��	
ij �

�ijPN
j���ij

i� j � 	� �� � � � � N ����

b
��	
jk �

�jkPK
k���jk

j � 	� �� � � � � N � k � 	� �� � � � �K ����

Both are some kind of summarization of the available information about the parameters

before any data has been observed�

� MAP Estimate for Semi�continuous HMM

Semi�continuous 
	�� or tied mixture 
�� HMM has its distinctive advantage in modeling

speech for recognition� In this section� we will discuss the MAP estimate for Semi�continuous

HMM �SCHMM�� where the state observation densities are mixtures of Gaussian PDFs�

bj�xt� �
XK

k��
�jkf�xtj�k� ����

�
XK

k��
�jkN�xtjmk� rk� ��
�

where N�xjmk� rk� is the k�th normal mixand denoted by

N�xjmk� rk� � jrkj
���exp
�

	

�
�x�mk�

trk�x�mk�� ��	�

Here � � � denotes proportionality�mk is theD�dimensional mean vector and rk is theD�D

precision matrix �a precision matrix is de�ned as the inverse of the covariance matrix� ��

These Gaussian mixture components are shared by all the states of every HMM� Each state

observation density di�ers from another by its corresponding mixture coe�cients �jk� which

satis�es the constraint
PK

k���jk � 	�

Thus� a SCHMM is represented by a parameter vector � � ���A� ��� where � is the initial

state distribution� A is the transition matrix� and � is the PDF parameter vector composed

of the mixture parameters �i � f�ik�mk� rkgk���������K for each state i� Since the SCHMMs

�jrj denotes the determinant of the matrix r and rt denotes the transpose of the matrix or vector r� In

the following� we will also use tr�r
 to denote the trace of the matrix r�

�



share the mixture components in state observation density� di�erent models must be es�

timated simultaneously� Now consider a collection of M SCHMMs�  � ���� ��� � � � � �M ��

The prior density for  is assumed to be�

g� � � 

MY
m��

g��m��
KY
k��

g�mk� rk� ����

where

g��m� �
NY
i��

f
�
�m	
i ��

�m�
i

�� � �
NY
j��


a
�m	
ij ��

�m�
ij

��� � �
KY
k��


�
�m	
ik ��

�m�
ik

���g ����

taking the form in equation ����

If the Gaussian mixand has a full covariance matrix� then g�mk� rk� is assumed to be a

normal�Wishart density 
�� of the form

g�mk� rkj�k� 	k� 
k� uk� � jrkj
��k�D	��exp
�

�k
�
�mk�	k�

trk�mk�	k��exp
�
	

�
tr�ukrk�� ����

where ��k� 	k� 
k� uk� are the prior density parameters such that 
k � D � 	� �k � 
� 	k is

a vector of dimension D and uk is a D �D positive de�nite matrix�

On the other hand� if the Gaussian mixand has a diagonal covariance matrix� then

g�mk� rk� is assumed to be a product of normal�gamma density 
�� with the form�

g�mk� rkj�kd� 	kd� 
kd� �kd� �
DY
d��

r
��kd����	
kd exp
�

	

�
�kdrkd�mkd � 	kd�

��exp
��kdrkd� ����

where �kd� 
kd� �kd � 
 � d � 	� �� � � � �D �

Let x�m�n	 denote the nth observation sequence of length T �m�n	 associated with model

m� and each model hasWm such observation sequences� Let �m denote the set of parameters

of the m�th HMM�

Given the set of observation sequences fx�m�n	g and the above prior PDF g� �� the

MAP estimates of  can be obtained by

 MAP � argmax


f

MY
m��

WmY
n��

f�x�m�n	j�m�g � g� � ����

This can also be solved by the EM algorithm�

De�ne a general Q�function as

Q�� j � �
MX
m��

WmX
n��

X
s�m�n�

X
l�m�n�

f�x�m�n	� s�m�n	� l�m�n	j�m�

f�x�m�n	j�m�
log f�x�m�n	� s�m�n	� l�m�n	j��m�

����

�



where s�m�n	 is the unobserved state sequence and l�m�n	 is the sequence of the unobserved

mixture component labels correspond to the observation sequence x�m�n	� Furthermore�

f�x� s� lj�� � �s��s�l�N�x�jml� � rl��
TY
t��

fast��st�st��stN�xtjmlt � rlt�g ����

and

f�xj�� �
X
s

f�s�bs��x��
TY
t��

ast��stbst�xt�g ����

It is straightforward to derive that�

Q�� j � �
MX
m��

Q
�m	
�� ���� �� �

MX
m��

Q
�m	
�A
� �A� �� �

MX
m��

Q
�m	
�� ���� �� �

KX
k��

Q�	k
���k� � ��
�

where

Q
�m	
�� ���� �� �

NX
i��

WmX
n��



�m�n	
� �i� log ��

�m	
i ��	�

Q
�m	
�A
� �A� �� �

NX
i��

NX
j��

WmX
n��

T �m�n�X
t��



�m�n	
t �i� j� log �a

�m	
ij ����

Q
�m	
�� ���� �� �

NX
i��

KX
k��

WmX
n��

T �m�n�X
t��

�
�m�n	
t �i� k� log ��

�m	
ik ����

Q�	k
���k� � �

MX
m��

WmX
n��

T �m�n�X
t��

�
�m�n	
t �k� logN�x

�m�n	
t j �mk� �rk� ����

with



�m�n	
t �i� j� � Pr�s

�m�n	
t � i� s

�m�n	
t�� � jjx�m�n	� �m� 	 	 t 	 T �m�n	 � 	 ����



�m�n	
t �i� � Pr�s

�m�n	
t � ijx�m�n	� �m� 	 	 t 	 T �m�n	 ����

�
�m�n	
t �i� k� � Pr�s

�m�n	
t � i� l

�m�n	
t � kjx�m�n	� �m� 	 	 t 	 T �m�n	 ����

�
�m�n	
t �k� � Pr�l

�m�n	
t � kjx�m�n	� �m� 	 	 t 	 T �m�n	 ����

Here �
�m�n	
t �i� k� and 


�m�n	
t �i� can be related according to the following equation with the

superscript �m�n� implied�

�t�i� k� � 
t�i� �
�ikN�xtjmk� rk�PK
k���ikN�xtjmk� rk�

����

These terms can be computed e�ciently by using the Forward�Backward algorithm 
����

	




The MAP auxiliary function is R�� j � � Q�� j �� log g�� � � With the form chosen for

g�� � as in equation �����

log g�� � �
MX
m��

NX
i��

��
�m	
i � 	� log ��

�m	
i �

MX
m��

NX
i��

NX
j��

��
�m	
ij � 	� log �a

�m	
ij

�
MX
m��

NX
i��

KX
k��

��
�m	
jk � 	� log ��

�m	
jk �

KX
k��

log g� �mk� �rk� � Constant ��
�

The �M�step� in EM algorithm now becomes max�
R�
� j � and the reestimation formulas

for the f�
�m	
i g� a

�m	
ij � �

�m	
ik can be easily derived as �

��
�m	
i �

�
�m	
i � 	 �

PWm
n��


�m�n	
� �i�PN

i���
�m	
i �N �

PWm
n��

PN
i��


�m�n	
� �i�

i � 	� �� � � � � N ��	�

�a
�m	
ij �

�
�m	
ij � 	 �

PWm
n��

PT �m�n�

t�� 

�m�n	
t �i� j�

PN
j���

�m	
ij �N �

PWm
n��

PN
j��

PT �m�n�

t�� 

�m�n	
t �i� j�

i� j � 	� �� � � � � N ����

��
�m	
ik �

�
�m	
ik � 	 �

PWm
n��

PT �m�n�

t�� �
�m�n	
t �i� k�PK

k���
�m	
ik �K �

PWm
n��

PT �m�n�

t��

PK
k���

�m�n	
t �i� k�

i � 	� �� � � � � N � k � 	� �� � � � �K

����

The reestimation formulas for f �mkg� f�rkg can be derived by maximizing

Q�	k
���k� � � log g� �mk� �rk� ����

which leads to solving the following equations�

MX
m��

WmX
n��

T �m�n�X
t��

�
�m�n	
t �k�

�

� �mk
logN�x

�m�n	
t j �mk� �rk� �

�

� �mk
log g� �mk� �rk� � 
 ����

and
MX
m��

WmX
n��

T �m�n�X
t��

�
�m�n	
t �k�

�

��rk
logN�x

�m�n	
t j �mk� �rk� �

�

��rk
log g� �mk� �rk� � 
 ����

��� Full Covariance Matrix Case

Notice that when rk is a full covariance matrix�

�

� �mk
logN�x

�m�n	
t j �mk� �rk� � �rk�x

�m�n	
t � �mk� ����

�

��rk
logN�x

�m�n	
t j �mk� �rk� �

	

�

�r��k � �x

�m�n	
t � �mk��x

�m�n	
t � �mk�

t� ����

		



and
�

� �mk
log g� �mk� �rk� � ��k�rk� �mk � 	k� ����

�

��rk
log g� �mk� �rk� �


k �D

�
�r��k �

�k
�
� �mk � 	k�� �mk � 	k�

t �
	

�
uk ��
�

Substitute these terms into equation ���� and ����� the reestimation formulas for �mk� �rk

can be easily obtained as�

�mk �
�k	k �

PM
m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k�x

�m�n	
t

�k �
PM

m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k�

��	�

�r��k �
uk � �k� �mk � 	k�� �mk � 	k�

t �
PM

m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k��x

�m�n	
t � �mk��x

�m�n	
t � �mk�

t


k �D �
PM

m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k�

����

These two equations together with equations ��	� to ���� constitute the MAP reestima�

tion formulas for  � The initial estimate can be chosen as the mode of the prior PDF g� ��

f�
�m	
i g� fa

�m	
ij g� f�

�m	
ik g have the same form as equation ���� � ���� in the case of DHMM�

and

mk � 	k ����

rk � �
k �D�u��k ����

Another choice is the mean of the prior PDF g� �� f�
�m	
i g� fa

�m	
ij g� f�

�m	
ik g also have the

same form as equation ���� � ���� and

mk � 	k ����

rk � 
ku
��
k ����

��� Diagonal Covariance Matrix Case

When rk is a diagonal covariance matrix�

�

� �mkd
logN�x

�m�n	
t j �mk� �rk� � �rkd�x

�m�n	
td � �mkd� ����

�

��rkd
logN�x

�m�n	
t j �mk� �rk� �

	

�

�r��kd � �x

�m�n	
td � �mkd�

�� ����

and
�

� �mkd
log g� �mk� �rk� � ��kd�rkd� �mkd � 	kd� ����

	�



�

��rkd
log g� �mk� �rk� � �
kd �

	

�
��r��kd �

�kd
�
� �mkd � 	kd�

� � �kd ��
�

Substitute these terms into equation ���� and ����� the reestimation formulas for �mkd� �rkd

can be easily derived as�

�mkd �
�kd	kd �

PM
m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k�x

�m�n	
td

�kd �
PM

m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k�

��	�

�r��kd �
��kd � �kd� �mkd � 	kd�

� �
PM

m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k��x

�m�n	
td � �mkd�

�

�
kd � 	 �
PM

m��

PWm
n��

PT �m�n�

t�� �
�m�n	
t �k�

����

The initial estimates of mkd and rkd can be chosen as the mode of the prior PDF g� ��

mkd � 	kd ����

rkd � �
kd �
	

�
���kd ����

or the mean of the prior PDF g� ��

mkd � 	kd ����

rkd � 
kd��kd ����

� Segmental MAP Estimates for HMM

Analogous to the segmental k�means algorithm 
��� 	��� a similar optimization criterion can

be considered for the MAP estimate of HMM� Instead of maximizing g��jx�� g��� sjx�� the

joint posterior density of parameters � and state sequence s is maximized� The estimation

procedure becomes�

!� � argmax
�
max

s
g��� sjx� � argmax

�
max

s
f�x� sj��g��� ����

Here !� is called the segmental MAP estimate of � 
	��� Just as it is the case with the

segmental k�means algorithm� it is straightforward to prove that starting with any estimate

��p	� alternate maximization over s and � gives a sequence of estimates with non�decreasing

values of g��� sjx�� i�e� g���p��	� s�p��	jx� 
 g���p	� s�p	jx� with

s�p	 � argmax
s

f�x� sj��p	� ����

	�



��p��	 � argmax
�

f�x� s�p	j��g��� ����

The most likely state sequence s�p	 is decoded by the Viterbi algorithm 
		�� If the maximiza�

tion over � in ���� has no closed form solution� it can be replaced by any hill climbing proce�

dure which replaces ��p	 by ��p��	 subject to the constraint that f�x� s�p	j��p��	�g���p��	� 


f�x� s�p	j��p	�g���p	��

��� Segmental MAP Estimate for DHMM

By applying the Viterbi algorithm to the training data� apart from the most likely state

sequences� the sets of observations associated with each HMM state are also available� Let

n
��	
i denote the numbers of observations in state i at time t � 	� and nij be the transition

count from state i to state j in the most likely state sequences� Furthermore� let fjk

denote the count of observing symbol vk in state j� It is straight forward to show that

the reestimation formulas in equation �	�� to �	�� are the closed form solution of ���� by

replacing the ei by n
��	
i � cij by nij and djk by fjk�

��� Segmental MAP Estimate for SCHMM

The reestimation formulas for f�ig and faijg are the same as that in DHMM� By replacing

�
�m�n	
t �i� k� in equation ���� by

�
�m�n	
t �i� k� � ��s

�m�n	
t � i� �

�
�m	
ik N�x

�m�n	
t jmk� rk�PK

k���
�m	
ik N�x

�m�n	
t jmk� rk�

��
�

where s�m�n	 is the most likely state sequence corresponding to observation sequence x�m�n	 �

and ���� denotes the Kronecker delta function� The reestimation formulas in equation �����

��	�� ���� and ��	�� ���� still hold�

Note that within an outer loop of iteration to update the HMM parameters� by making

a single adjustment� f�
�m	
ik g� fmkg� frkg can be updated synchronously with the update

of f�
�m�n	
i g� fa

�m�n	
ij g� Another extreme alternative which may need less global �outer�

iterations is that f�
�m	
ik g� and�or fmkg� frkg are �rst updated by an inner loop of iterative

adjustments to their �optimal� values �which is usually very time consuming� based on the

current labeling of the training data before f�
�m�n	
i g� fa

�m�n	
ij g are updated to get the new

labeling of the training data� A compromise can be updating f�
�m	
ik g �or simultaneously

	�



fmkg� frkg � a predetermined number of times before updating the remaining parameters�

The optimal scheme that allows the problem to be solved in the shortest time possible is

data dependent� It is also possible to use the approximate solution for these parameters as

discussed in the next subsection�

��� Segmental Quasi�Bayes Estimate for SCHMM

In SCHMMs� all states of all HMMs share the same mixture components� so it is reasonable

to assume that these mixture components are �xed and need not be adapted in the adaptive

process� By applying the Viterbi algorithm to the training data� the sets of observations

associated with each HMM state are available� So the updating formula for f�
�m	
ik g corre�

spond to the maximization in equation ���� can be derived by solving the following general

Bayesian estimation problem for �nite mixture distribution�

Given a sequence of observations x�� x�� � � � � xn� conditional on � � ���� ��� � � � � �K� and

density functions f�� f�� � � � � fK � each xn is assumed independent with probability density�

p�xnj�� �
XK

i��
�ifi�xn� ��	�

where the �i�s are unknown� non�negative and summed to unity while the fi are known�

Assuming that the prior density for � has the form of a Dirichlet density

p��� � D��j�
��	
� � �

��	
� � � � � � �

��	
K � �

KY
i��

�
�
���
i

��
i ����

where �
��	
i 
 
� i � 	� �� � � � �K�

After observing x�� we obtain

p��jx�� �
KX
i��

pi�x��D��j�
��	
� � �i�� � � � � �

��	
K � �iK� ����

where

pi�x�� �
fi�x���

��	
iPK

i��fi�x���
��	
i

����

and

�ij �

��
�
	 if i�j


 otherwise

	�



Many well�known approximate Bayesian learning procedures to solve this problem arise

from approximating the RHS of ���� by

p��jx�� � D��j�
��	
� � ����� � � � � �

��	
K � ���K� ����

The ��ij �s take values according to some speci�ed method� Proceeding in this way� the

necessary computation could be kept within reasonable bounds�

In the quasi�Bayes procedure proposed by Smith and Makov 
���� it is suggested that

���i be replaced by pi�x��� and so

p��jx�� � D��j�
��	
� � � � � � �

��	
K � ����

where �
��	
i � �

��	
i � pi�x���

Then� subsequent updating takes place entirely within the Dirichlet family of distribu�

tions� p��jx�� x�� � � � � xn� is Dirichlet with parameters �
�n	
i � �

�n��	
i � pi�xn�� where �

�n��	
i

are parameters of p��jx�� x�� � � � � xn���� and

pi�xn� �
fi�xn��

�n��	
iPK

i��fi�xn��
�n��	
i

����

In the sense of the approximate posterior distribution with mean identical to that of the

true distribution� the convergence properties were established in 
����

It is easily veri�ed from the well�known properties of the Dirichlet distribution that the

�quasi�� posterior mean for �i� after observing x�� x�� � � � � xn is given by

��
�n	
i �

�
�n	
i

�� � n
����

and the mode of the approximate posterior density is

��
�n	
i �

�
�n	
i � 	

�� � n�K
����

where �� � �
��	
� � �

��	
� � � � �� �

��	
K � Both ���� and ���� can serve as the updating formula

for mixture coe�cients in the segmental quasi�Bayes learning for SCHMMs� Note that

because such update is an approximation� the monotonic increasing property of the objective

function will not be guaranteed� but it is believed that this scheme will lead to a reasonable

estimate of the parameters for SCHMMs� Also note that the results of above quasi�Bayes

method depend on the order of presentation of the xi�s� A natural choice is to present the

xi�s in the order of their appearance in the training speech data�

	�



� Estimation of the Parameters for Prior Distribution

In the previous Sections it was assumed that the prior density g��� is a member of a

preassigned family of prior distributions� In pure Bayesian approach� the parameter vector

� of this family of PDFs fg��j��g is also assumed known based on a subjective knowledge

about �� In reality� it is di�cult to possess complete knowledge of the prior distribution�

An attractive compromise between the classical non�Bayesian approach which uses no prior

information and the full Bayesian one is to adopt the Empirical Bayes �EB� approach 
���

��� �	�� Here we use a somewhat broader interpretation of the term �empirical Bayes� than

what was implied by Robbins�s original de�nition� � is replaced by any estimate derived

from the previous observed data� Then the previous data and current data are linked in

the form of a two�stage sampling scheme by a common prior PDF g��� of the unknown

parameters ��

Let x denote the current observation set to be used to adaptively estimate �� At the time

of making the current observation there are available past observation sets x��x�� � � � �xn

obtained with independent past realizations ��� ��� � � � � �n� The words �current� and �past�

are not necessarily taken in a strictly temporal sense� Usually ��� ��� � � � � �n are not directly

observed� but they have a common prior PDF fg��j��g � The hyperparameter � can be

obtained by

max



f�Xj�� �

Z


f�Xj �g� j��d ��
�

where X � �x��x�� � � � �xn��  � ���� ��� � � � � �n�� f�Xj � �
Qn
i�� f�xij�i� and g� j�� �

Qn
i�� g��ij��

However� the maximum likelihood estimation above bases on the marginal density

f�Xj�� and is di�cult to compute� To simplify the problem� we can use a modi�ed likeli�

hood approach 
�	�� where the likelihood function of the unknown  are de�ned as the joint

probability of �X� � in the EB scheme� i�e� the likelihood function is

L�X� � �
nY
i��

f�xij�i�g��ij�� ��	�

This likelihood function is then maximized with respect to  and ��

Note that L�X� � is not a likelihood function in the usual sense of the word since  is

unobservable random variables� More research seems to be necessary to justify the use of

this approach� Apart from its justi�cation� under the current assumptions of the form of

	�



prior PDF g��j��� getting the maximum �modi�ed� likelihood estimates of  and � is not

trivial� To further simplify the problem� the method of moment can be used to estimate ��

One may use the observation sets x��x�� � � � �xn to estimate the corresponding HMMs

���� ���� � � � � ��n with the classical Baum�Welch or segmental k�means algorithm� and then

pretend to view ��i as the observations with density g���� In the case of DHMM where g���

is assumed to have the form of equation ���� i�e� a matrix beta PDF� with the properties of

the moments for matrix beta PDF� we have

E��i� �
�iPN
i���i

����

and

V ar��i� �
�i�
PN

i���i � �i�

�
PN

i���i�
��
PN

i���i � 	�
����

�
E��i�
	�E��i��PN

i���i � 	
����

Then we have

�i � E��i�f
E��i�
	�E��i��

V ar��i�
� 	g ����

Similarly for �ij and �ik we have

�ij � E�aij�f
E�aij�
	 �E�aij��

V ar�aij�
� 	g ����

�ik � E�bik�f
E�bik�
	�E�bik��

V ar�bik�
� 	g ����

Replacing E��i�� V ar��i�� E�aij�� V ar�aij�� E�bik�� V ar�bik� by their corresponding sample

moments with ���� ���� � � � � ��n� the moment estimates of �i� �ij � �ik can be obtained�

In the case of SCHMM� the moment estimates of �i� �ij� �ik have the same forms as

their counterparts in DHMM�

When the Gaussian mixand has diagonal covariance matrix� the prior density g�mk� rk�

has the form of equation ����� Note that

E�rkd� �

kd
�kd

����

V ar�rkd� �

kd
��kd

����

So


kd �

E�rkd��

�

V ar�rkd�
�	

�

	�



�kd �
E�rkd�

V ar�rkd�
�	
	�

Furthermore� note that�

E�mkd� � 	kd �	
��

V ar�mkd� �
�kd

�kd�
kd � 	�
�	
��

Then

	kd � E�mkd� �	
��

�kd �
�kd

V ar�mkd��
kd � 	�
�	
��

Also substituting the sample moments of rkd andmkd into the above equations� the moment

estimates of 
kd� �kd� 	kd� �kd are obtained�

For the full covariance matrix case� the prior density g�mk� rk� has the form of equation

����� It is more di�cult to write down a suitable number of estimating equations for the

moment estimates of �k� 
k� 	k� and uk� If one considers a more restrictive prior density

family by further assuming

�k � 
k �
XM

m��

XN

i��
��
�m	
ik �	
��

and ��
�m	
ik as the moment estimates of �

�m	
ik � then the moment estimates of 	k and uk can be

obtained as

	k � E�mk� �	
��

u��k � 
��k E�rk� �	
��

by replacing E�mk� and E�rk� with their corresponding sample estimates�

When enough training data are available� the above method of moment will lead to

a reasonable estimate of hyperparameters �� This estimate may be improved by the fol�

lowing iterative scheme� starting with an initial estimate ��m	� get the MAP estimates

���� ���� � � � � ��n from x��x�� � � � �xn with any methods presented in the previous sections� and

then an improved ��m��	 can be obtained by using the above method of moment�

The physical meaning of the prior density g��j�� is application dependent� For exam�

ple� in a speaker adaptation problem� g��j�� may be used to represent the information of

the variability of a certain model among the di�erent speakers� So the training data for

estimating � can be divided into di�erent sets correspond to di�erent speakers or speaker

	�



groups� In another kind of application� for example� to build the context�dependent models

from context�independent model� the prior density g��j�� will represent the variability of

� caused by the di�erent context� So the training data will be divided into sets according

to the context information� Further applications of this kind of Bayesian learning method

to speech recognition can be found in 
	��� Note that the prior knowledge represented by

g��j�� does not include those deterministic ones� For example� in left�right HMMs� some

parameters are known and �xed� and g��j�� will not include them�

The estimation of hyperparameters � is still an open problem� Further research is

needed� This is a radical problem in order to make this kind of Bayesian learning method

really applicable to adaptive training of HMMs�

� Conclusion

In this paper a theoretical framework for Bayesian adaptive learning of discrete HMM and

semi�continuous one with Gaussian mixture state observation densities is presented� Cor�

responding to the well�known Baum�Welch and segmental k�means algorithms for training

HMM� formulations of MAP and segmental MAP estimation of HMM parameters are de�

veloped� Furthermore� a computationally e�cient method of the segmental quasi�Bayes

estimation for semi�continuous HMM is also presented� The important issue of prior den�

sity estimation is discussed and a simpli�ed method of moment estimate has been given�

The method proposed in this paper will be applicable to some problems in HMM training for

speech recognition such as sequential or batch training� model adaptation� and parameter

smoothing� etc�
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