
Adler: A Resilient, High-Performance and Energy-Efficient
UAV-Enabled Sensor System

Dongda Li

The University of Hong Kong

Yuexuan Wang

Zhejiang University

The University of Hong Kong

Zhaoquan Gu

Guangzhou University

The University of Hong Kong

Tong Shen

Zhejiang University

The University of Hong Kong

Tianhao Wei

Zhejiang University

Yongqin Fu

Zhejiang University

The University of Hong Kong

Heming Cui

The University of Hong Kong

Mingli Song

Zhejiang University

Francis C. M. Lau

The University of Hong Kong

ABSTRACT
Sensor networks have been widely studied, but implementing a

real system that achieves resilience, high performance and energy

efficiency simultaneously is still a challenging task. We present

Adler, a real unmanned aerial vehicle (UAV) enabled sensor sys-

tem that can meet that challenge for general applications. We

demonstrate Adler in three fundamental applications: localization,

gathering and network reconfiguration. Evaluation results vali-

date Adler’s ability to achieve resilience, high performance and

energy efficiency. Using Adler’s application program interfaces

(APIs), it is easy to evaluate algorithms for a pure sensor system or

a UAV-enabled sensor system. Adler’s source code is available at

https://github.com/hku-systems/adler.

1 INTRODUCTION
Sensor networks are widely adopted in monitoring tasks including

natural disaster[5], pollution [22], and industrial equipment [28].

A set of sensor nodes is deployed into a target area to sense for

specific information, such as collecting temperature or humidity

over agricultural lands. Sensed data can be aggregated to a base

station by two common methods: a composed multi-hop network

among the sensors[31], or a mobile vehicle that traverses the area

to fetch data from nearby sensors[34].

Unfortunately, these methods cannot achieve resilience, high-

performance and energy-efficiency at the same time. For instance, in

investigating volcanic information, it is dangerous to drive a vehicle

to collect data, and even an autonomous vehicle is limited by harsh

conditions[40]. A multi-hop network shows poor performance in

collecting data because many collisions and interference problems

lead to package loss in a dense network, many isolated nodes find

it difficult to send data to the base station if sensors are sparsely

distributed[3]. In addition, a multi-hop network suffers from the

energy-hole problem[43] that some nodes run out of energy faster

when they have more packages to transmit.

The rapid development of unmanned aerial vehicle (UAV) tech-

nology makes it optimistic for collecting sensors’ data through

a UAV-enabled system[17, 20, 38, 39, 46], which has three major

advantages compared to a multi-hop network or a mobile vehicle

method. First, UAVs are able to reach harsh places, which makes the

system more flexible for real-life applications and tolerate harsher

conditions compare to a mobile vehicle method. Once some nodes

run out of energy, a multi-hop network might break down, while

a UAV-enabled system still works. In short, a UAV-enabled sensor

system can be much more resilient than existing sensor networks

without UAVs. Second, UAVs can fly close to a sensor node to col-

lect data as this has lesser interference than a multi-hop network.

Compared to a mobile vehicle, a UAV is faster and has better com-

munication quality with the sensor. We evaluated the received

signal strength indicator (RSSI) between a UAV and a sensor in real

experiments, the RSSI is much higher when the UAV hovers in the

air than it is on the ground. Third, a UAV-enabled sensor system

could prolong sensors’ lifetime, because UAVs may be recharged

when they fly back to the base station while the sensors are difficult

to recharge in harsh environments.

However, to the best of our knowledge, there exists no real im-

plementation of such a system that achieves good performance for

general applications. The existing UAV-enabled sensor systems are

mainly evaluated by extensive simulations[17, 25, 39, 46]; only a

few of them implement a real system for a specific task[29, 36]. For

example, UAVs are utilize to gather sensed marine-coastal environ-

mental data in [36]. The implemented systems cannot be resilient

to more general applications since they lack a highly unified sys-

tem framework. Some works use UAVs carrying sensors, such as

cameras, for monitoring[21, 45], but they require a large number

of UAVs to cooperate simultaneously.

In this paper, we present Adler
1
, a real UAV-enabled sensor sys-

tem that achieves resilience, high performance and energy efficiency

concurrently, which builds on a unified framework for general appli-

cations. By utilizing Adler’s application program interfaces (APIs),

it is easy to evaluate any algorithm or run any application on a

pure sensor network or a UAV-enable sensor system. We imple-

mented three fundamental applications: localization, gathering,

and network reconfiguration as examples. First, to get a sensor’s

three-dimension (3D) position if global position system (GPS) data

1
Adler means eagle and it is the symbol of John the Evangelist who preaches and

distributes sermons efficiently.

https://github.com/hku-systems/adler
Administrator
 HKU CS Tech Report TR-2018-01

is unavailable or inaccurate, we design a UAV-based localization

method, which improves localization accuracy compared to meth-

ods through a multi-hop network or a mobile vehicle (as anchor

nodes on the ground). Second, to gather data efficiently, we propose

a UAV-based method that uses the minimum number of hexagons

to cover sensors, designs flight trajectory and gathers sensors’ data

by UAVs. This method reduces gathering latency compared to a mo-

bile vehicle method. Third, to update parameter settings or switch

between different applications/tasks, we present a UAV-based recon-

figuration method that utilizes over-the-air (OTA) programming

to reconfigure sensors through one-hop communication, which

reduces package loss probability compared to a multi-hop OTA

programming method.

We implemented Adler with DJI M100 UAVs and EZ240 Sensor

nodes in real experiments, and we conducted extensive simulations

for large-scale sensors. Adler improves localization accuracy of 20

sensors by reducing 78.4% root-mean-square error (RMSE) com-

pared to methods by multi-hop networks or mobile vehicles. Adler

achieves about 10% higher package receiving ratio compared to no-

table mobile sink methods for gathering application. Adler reduces

sensors’ average energy consumption by about 80% compared to

multi-hop based methods. When the number of sensor nodes in-

creases or some nodes run out of energy, Adler is more resilient

and holds better performance than the state-of-the-art methods.

The contributions of Adler are threefold. First, Adler is easy to

use by utilizing APIs. Many existing algorithms for sensor networks

can be evaluated in our testbed via Adler. Second, Adler achieves

resilience, high performance and energy efficiency at the same time.

Thrid, We demonstrate three fundamental applications of Adler

and evaluation results validate that Adler greatly improves these

applications’ performance in real scenario.

The paper is organized as follows. We introduce related works

in the next section. Design of Adler is presented in Section 3, and

we implement three fundamental applications: localization, gather-

ing, and network reconfiguration in Sections 4-6 respectively. The

evaluation results are provided in Section 7 and we conclude the

paper in Section 8.

2 RELATEDWORK
There are several existing UAV-enabled sensor systems, but they are

only simulated for evaluation. For example, UAVs are utilized as mo-

bile data collectors in a sensor system in [17, 20, 25, 29, 36, 39, 46].

However, most of them are evaluated by simulations, which are

apart from real systems. For example, interference could cause con-

nection condition change dynamically[1], but it is not considered

in these simulations.

Many localization methods are proposed for a sensor system

but these methods incur low accuracy in the real experiments.

Localization methods by a multi-hop network measure radio signal

parameters, such as the time of arrival (TOA), the angle of arrival

(AOA) or the received signal strength (RSS), but they consumemuch

energy and incur accumulative errors[2, 13]. Localization methods

by ground anchor nodes, such as mobile vehicles, are interfered by

ground-ground communication (two nodes on the ground) accuracy,

which has lower resolution compared to air-ground communication

(a UAV in the air)[14, 15]. UAVs are utilized to locate sensor nodes

through RSS measurement in [38], but they assume the measured

values and computed distances are precise. Most of them do not

consider the measuring error in a real environment.

Gathering protocols by a multi-hop network have the energy

hole problem, such as SPIN[31]), LEACH[16], and EBRP [33]. Though

LEACH and EBRP utilize clusters to reduce energy cost, they cannot

solve the energy hole problem at all. Gathering by a mobile vehicle

is limited by ground conditions, such as DAWN [34], and the link

quality would be worse than UAV-based gathering methods due to

obstacles and various ground-ground interference.

Network reconfiguration is commonly achieved by multi-hop

flooding methods, such as DPMT [11] and BLU [41]), but these

methods incur broadcast storm problem [37]. Notable methods,

such as Deluge and Rateless Deluge [12, 19], utilize multi-hop OTA

programming for reconfiguration. Mobile Deluge proposed in [47]

solves the broadcast problem, where a human carrying a mobile

firmware reconfigures sensors manually. However, this method

is quite inefficient. Utilizing UAVs for reconfiguration would be a

promising way and we present the method in the paper.

3 DESIGN OF ADLER
3.1 System Overview
As shown in Fig. 1, Adler consists of three important components:

sensors that are deployed in a target area, UAVs that cooperate with

sensors, and a base station for mission scheduling and management.

Specifically, a sensor senses information and communicates via

a wireless channel. Each UAV is equipped with a powerful airborne

computer for computation and has a rechargeable battery for flight

and wireless communication. Note that, UAVs are equipped with

high gain antenna that achieves larger communication range than

the sensors and thus a UAV can cover a large target area. If a UAV’s

energy is insufficient, it can fly back to the base station to recharge.

data station

UAV sensorVV sU

target area

Figure 1: An overview of Adler
Sensor systems are capable of varied applications. We define an

application as a specific task such as gathering data, broadcasting,

etc. A mission is defined as an application in a target area with

specific data, such as gathering humidity data in a farmland. A

firmware is defined as an executive program for a sensor to run.

In Adler, a mission is sent from the base station to UAVs with

input and expected output as follows:

• Input: a target area, targeted sensors, and application data

such as firmware to be upgraded;

2

Airborne computer

Middleware Layer

Application Layer

Trajectory optimization

Driver Layer

Communication driverUAV SDK

Sensor node

Command Response Communication protocol

Communication driver

CMD, Data

Sensor dirver

Sensor Data

Wireless

communication

Application Protocol

TX RX

Mission input

Mission area

Application input data

App data

Waypoint list

RXTX

Comm state

UAV state
Communication control

y

Flight control

Control command UAV state

CMD Data

Sensor nodeSensor node

Wireless

communication

Mission output

Node id

Application output data

App dataAp data

Database

Figure 2: Architecture of Adler

• Output: collected data from sensors or other application

results for the mission.

To carry out a new mission or to evaluate existing application

algorithms, Adler simplifies the process as follows. First, implement

an application algorithm by utilizing Adler’s APIs and compile it

to a firmware. Second, the base station sends the firmware to UAVs

which would fly to re-program targeted sensors. Adler designs flight

trajectory for each UAV to reach targeted sensors efficiently, and

upgrades the firmware to sensors via OTA programming method.

Finally, UAVs collect data to the base station or sensors run the

firmware to evaluate application algorithms.

3.2 Adler Architecture
We propose a unified architecture for Adler in Fig. 2. A UAV has

three main layers: application layer records the application protocol

and designs its trajectory, middleware layer coordinates its motion

and communication, and driver layer includes UAV’s software de-
velopment kit (SDK) and communication drivers. We designed both

application layer and middleware layer for UAVs in Adler. A sensor

node has two main layers: application layer contains application
protocols and sensing functions, and driver layer includes sensor
and communication drivers.

3.2.1 Application Layer of a UAV. According to the received
mission, application layer executes the following subtasks in order:

gets mission data from the base station, optimizes flight trajectory,

obtains communication data and stores application data to the base

station. There are two main components in the layer:

Trajectory Optimization is to calculate the UAV’s trajectory on

the basis of target area and targeted sensors’ positions. Specifically,

it computes the coordinates and order of the UAV’s waypoints. Most

applications need the UAV to traverse targeted sensors quickly, a

good trajectory optimization method can reduce mission latency.

Application Protocol is the core of executing an application, which
contains: 1) getting input from the base station; 2) generates data

and application firmware to be sent; 3) broadcasts wakeup signals

to sensor nodes; 4) schedules communication process; 5) obtains

application data and send the output to the base station.

3.2.2 Middleware Layer of a UAV. The middleware layer

consists of two main components. Flight control is to generate

flight control commands according to waypoints from trajectory

optimization. It switches flight state between flying and hover-

ing. Communication Control is to maintain communication state

with sensor nodes and other UAVs, which switches state between

sleeping and working.

Coordinating flight control and communication control is a vital

task and we propose state machine of middleware layer as Fig. 3. In

the beginning, the UAV takes off and flies to the first mission way-

point generated by application layer. When it arrives, it publishes

an arrived message and keeps hovering by flight control compo-

nent. The communication control component switches to working

state and communicates with sensor nodes or other UAVs when it

receives the arrived message; when communication is finished, it

publishes a communication finished message and switches to sleep-

ing state. Once flight control component receives communication

finished message, it calculates the energy (denote as Eb) needed to

fly back to the base station. If remaining energy is less than Eb + δ
or current waypoint is the last one, the UAV flies back for landing,

where δ is maximum energy cost to hover for communication at a

waypoint; otherwise, flight control component switches to flying

state and the UAV flies to next mission waypoint.

Comm

finished

Take off Arrived

Flight control Communication control

FLYING

fly to next point

HOVERING

hovering

WORKING

 communication

SLEEPING

 sleeping

Flight Init
Trajectory Init

Comm Init
Comm init

End
get output

ArrivedE > Eb + δ Arrived

E ≤ Eb + δ or

point == last point

 /fly backEnd
recharging

Figure 3: State machine of middleware layer

3.2.3 Application Layer of a Sensor. There are two main

components in application layer of a sensor node: communication
protocol schedules a sensor’s duty cycle and communication with

a UAV (in correspond to application protocol of a UAV) or other

sensors; command response component receives commands from

communication protocol component and responses to the com-

mands, such as modifying duty cycle or getting sensed data. Since a

sensor node has limited storage and memory, it cannot store differ-

ent firmwares. In Adler, we design a UAV-based OTA programming

method to upgrade and re-program a sensor’s firmware for a new

application or a new mission (please refer to Section 6).

3.2.4 Driver Layer of a UAV and a Sensor. A UAV’s driver

layer consists of UAV SDK and communication drivers, while a

sensor’s driver layer consists of sensors drivers and communication

drivers. Both layers are implemented by manufactures. Communi-

cation drivers include basic network layer, physical layer, and data

3

link layer in Open Systems Interconnection model (OSI model). For

a sensor, the communication driver contains more modules such as

power management and embedded operation system (TinyOS [24],

Contiki [9], etc). Sensor driver consists of basis interfaces such as

open, measure, configure, close, etc.

3.3 Adler API
Table 1 shows Adler’s APIs to simplify the usage. Trajectory and
flight APIs provide control of a UAV’s motion and feedback of the

UAV’s state; application APIs are responsible for UAVs’ cooperations
with sensors; communication APIs are designed for data transmis-

sion among UAVs and sensors, such as a UAV communicates with

other UAVs or sensors, and a sensor communicates with other

sensors; sensor command response APIs imply sensors’ actions to

commands.

Table 1: Adler API

Function Description
UAV: Trajectory & Flight API

wPointList
getTraject(nodeSet)

calculate waypoint list according

to nodes position

getUavStat(state) get UAV state, including UAV’s

position, remaining power, etc.

uavFlyTo(wayPoint) UAV flies to a specific waypoint

and hovers there

UAV: Application API
nodeSet detectSensor() detect sensor nodes within

communication range

upgrade(firmware) upgrade sensor’s firmware (such

as compiled algorithms) via OTA

scanRssi(channel) scan radio channel RSSI value

gathering(nodeSet) gather data from sensors

sendCommand(nodeSet) UAV send command to sensors

UAV & Sensor: Communication API
unicast(nodeId,data) send data to sensor or UAV

multicast(nodeSet,data) send data to a group of destination

Sensor: Command Response API
commandParse
(command, len)

parse command from UAV starts

the response of command

load(firmware) load new firmware and restart

Listing 1: An example of upgrading sensors’ firmware
wPo in t L i s t = getTraject(nodeSet);
whi l e (u a v S t a t e . power > f lyBackPower \

&& (wPo i n t L i s t . nex t != NULL) {

uavFlyTo(wPointList.next);
i f (detectSensor() . l e ng t h != 0)

upgrade("firmware.elf"); / /OTA upgrade

getUavStat(uavState);
}

uavFlyTo(station);

Listing 1 shows an example to upgrade a set of sensors by one

UAV via OTA programming. The program first gets waypoint list of

a mission; then the UAV flies to waypoints one by one to upgrade

sensors’ firmware until the mission is finished or UAV’s energy is

exhausted. At last, the UAV flies back to the base station.

Listing 2 shows a gathering algorithm we implemented by utiliz-

ing Adler’s APIs. Compiled file of Listing 2 is the firmware to be up-

graded on sensors. By Line 6 of Listing 1 (upgrade("firmware.elf")),

the firmware can be upgraded through OTA programming.

Listing 2: An gathering example running on a sensor
s e n s o r _ t h r e a d () {

wh i l e (1) {

s l e e p (g a t h e r _ i n t e r v a l) ; / / s ave energy

unicast(nodeId,sensorData);
/ / send s en so r da t a to o th e r s e n s o r s or UAVs

}

} / / the codes a r e compi l ed to f i rmware . e l f

On the basis of Adler’s APIs, it is very easy to implement and

evaluate varied applications. We demonstrate three fundamental

applications: localization, gathering and network reconfiguration

in Sections 4-6 respectively.

4 THE LOCALIZATION APPLICATION
Localization is a fundamental step in a sensor system [1, 2, 13, 15,

23] if sensors’ position information is unavailable or inaccurate.

In Adler, we implement localization application by a UAV-based

method. We formulate the localization problem as follows:

Problem 1. Considering a target area with N deployed sensors
at locations S = {S1, S2, . . . , SN }, in which Si = (Sx

i , Sy
i , Sz

i) refer-
ring to (x ,y, z) coordinates respectively. Localization problem is to
determine all locations’ positions in S .

4.1 Overview of UAV-based Localization
The UAV-based localization method consists of three modules: grid
module divides a target area into grids; trajectory module determines

UAVs’ flight trajectory to traverse all sensors; localization module
calculates each sensor’s location coordinates by Received Signal

Strength Indicator (RSSI).

RSSI is commonly used to measure the distance between a sender

and a receiver, which follows the equation [44]:

RSSI = A + 10nloд10 (d); (1)

where A represents the received signal strength (dBm) at where

the distance is 1m away from the sender, n represents the pass loss

exponent depending on environment, and d represents the distance

to measure. In Adler, UAVs can call the API scanRssi(channel) to
collect RSSI at different positions. According to our evaluations,

RSSI is much more accurate when UAVs hover in the air than they

are on the ground. Therefore, a UAV-based localization method can

achieve better accuracy than existing localization algorithms that

use a mobile vehicle as anchor nodes on the ground.

4.2 Grid and Trajectory
In the localization process, the target area is first divided into grids

and then UAVs traverses all grid vertices by designed flight tra-

jectories. Actually, localization can be realized by even one UAV,

whose flight trajectory is depicted in Fig. 4(a). Each vertex serves

as a signal monitoring place. When a UAV arrives at a grid vertex,

it keeps hovering until localization module is finished. Afterwards,

it flies to next grid vertex by the designed trajectory. Note that,

we choose appropriate grid length and fight height such that a

sensor can communicate with a UAV locating at four grid vertices

4

successfully. If there are more UAVs, localization can be realized

more efficiently.

0
20

40
60

80
100 0

20
40

60
80

100

0.00
1.00
2.00
3.00
4.00
5.00
6.00
7.00
8.00
9.00
10.00

(a) Grid and Trajectory

(x,y,z)

(x1,y1,z1)

(x2,y2,z2)

(x3,y3,z3) (x4,y4,z4)

r1r2

r3
r4

UAV Sensor

(b) Localization

Figure 4: An example of localization application

4.3 Localization
When a UAV arrives at a grid vertex, it broadcasts a signal to nearby

sensors and a sensor returns an acknowledgment signal containing

its identifier (ID) and RSSI of the broadcasted signal. After receiving

sensors’ signals, the UAV records its current position and a list of

ID and RSSI map. Due to page limits, we omit some details about

receiving sensors’ signals within grids. When the UAV traverses a

grid’s four vertices, it computes sensors’ position coordinates by

the following equations:

(x − x1)
2 + (y − y1)

2 + (z − z1)
2 = r2

1
(2a)

(x − x2)
2 + (y − y2)

2 + (z − z2)
2 = r2

2
(2b)

(x − x3)
2 + (y − y3)

2 + (z − z3)
2 = r2

3
(2c)

(x − x4)
2 + (y − y4)

2 + (z − z4)
2 = r2

4
(2d)

where (x1,y1, z1), (x2,y2, z2), (x3,y3, z3), (x4,y4, z4) are the coordi-
nates of the four vertices of a grid (denote the vertices asv1,v2,v3,v4
respectively); r1, r2, r3, r4 are computed distances from a sensor

(with the same ID) to four vertices by RSSI values; (x ,y, z) is the
sensor’s coordinate to calculate. Note that, the designed trajectory

in Fig. 4(b) ensures that every sensor in a grid can receive a broad-

cast signal from the grid’s four vertices when the UAV traverses.

If computed distances ri , i ∈ [1, 4] are precise, the equations

have exactly two solutions, one is the sensor’s position while the

other one is above the UAV. Since the UAV flies above sensors, it

is easy to find the correct solution. However, computed distances

are always inaccurate in practice and we present a position esti-

mation algorithm to address the inaccuracy issue as Alg. 1. The

idea behind the algorithm is: every three equations of Eqn. (2) have

two solutions and the one with smaller z-coordinate is chosen; and
then calculate the error compared to the other equation and select

the solution with minimal error. We implemented the algorithm in

Adler for real experiments and the results show that this method

can achieve good localization accuracy.

4.4 Discussions
The UAV-based localization method has many advantages. As eval-

uated, RSSI between air-ground communication (a sensor and a

hovering UAV) is more accurate ground-ground communication

(two devices on the ground). Thus, the UAV-based method suffers

from less interference from ground communication and greatly im-

proves localization accuracy than these methods through a mobile

vehicle or anchor nodes on the ground. As evaluated in Section 7.3,

Adler reduces 78.4% root-mean-square error (RMSE) compared to

Algorithm 1 Position Estimation Algorithm

1: For any three equations in Eqn. (2), compute the solutions and

choose the appropriate one with smaller z-coordinate as:
2: Equation (2a) (2b) (2c)→ pa : (xa ,ya , za);
3: Equation (2a) (2b) (2d)→ pb : (xb ,yb , zb);
4: Equation (2a) (2c) (2d)→ pc : (xc ,yc , zc);
5: Equation (2b) (2c) (2d)→ pd : (xd ,yd , zd);
6: For pa and vertex v4, calculate the Euclidean distance between

them as da1 and compute distance by RSSI at v4 and Eqn. (1)

as da2. Calculate δa = |da1 − da2 |;
7: Repeat the process in Line 6 for pb and v3, pc and v2, pd and

v1 to get δb , δc , δd respectively;

8: Select smallest δi (i = a,b, c,d) and set corresponding pi as the
sensor’s position.

ground anchor method. In addition, detected RSSI values are some-

times inaccurate, we address the real problem which is ignored in

many existing methods.

5 THE GATHERING APPLICATION
Gathering is an important application for a sensor system. The base

station gathers sensors’ data, such as temperature [30], or humid-

ity [4] for further analysis and decisions. In Adler, we implement

gathering application by a UAV-based method, which has obvious

advantages than traditional methods[16]. We formulate gathering

problem in a 2-dimension target area as follows:

Problem 2. Considering a 2D target area and N targeted sensors
at locations S = {S1, S2, . . . , SN }, in which Si = (Six , S

i
y). Gathering

problem is to collect all sensors’ data to the base station.

5.1 Overview of UAV-Based Gathering
We present a UAV-Based gathering method in Adler, in which UAVs

are dispatched to collect each sensor’s data at location Si ∈ S .
The method consists of three modules: hexagon covering module
divides targeted sensors into hexagons, and a UAV hovering at

a hexagon’s center point can collect all sensors’ data within the

hexagon; trajectory module determines UAVs’ flight trajectories

to traverse all hexagons’ center point; gathering module designs
data collecting scheme from sensors which a sensor calls the API

unicast(nodeId, data) of Section 3.3. The method can work even

if there is only one available UAV and we mainly introduce the

method to gather sensors’ data by a single UAV. Obviously, more

UAVs can gather data more efficiently and the difference is: the

flight trajectories should be designed carefully.

5.2 Hexagon Covering
If sensors are distributed sparsely in a target area, a UAV can visit

sensors one by one. Considering a general scenario which more

sensors are deployed at a sensitive area, we first divide sensors into

K clusters by adopting clustering algorithms[7, 32]. For each cluster,

we use a minimum number of hexagons to cover it. Technically,

assume a sensor’s communication range is ru and a UAV flies at

a height of h, we use hexagons with side length a =
√
r2u − h

2
to

cover each cluster. Suppose a cluster has n sensors with positions

S = {S1, S2, . . . , Sn }, we propose a minimum hexagon covering

algorithm as Alg. 2. The idea behind the algorithm is: first find

5

an arbitrary hexagon covering scheme for a cluster, which can be

done easily because hexagons can fully cover an arbitrary area

without overlapping. Then move the scheme along x-axis, or y-axis,

or rotate by appropriate angles, compare the number of needed

hexagons for these variations and compute the optimal hexagon

covering scheme.

Algorithm 2Minimum Hexagon Covering Algorithm

1: Find an arbitrary hexagon covering scheme as C =

{H1,H2, . . . ,Hk };

2: for Each hexagon Hi with center point hi do
3: Find Sj covered by Hi such that it has largest distance to hi ;
4: Move C to Si along x-axis and y-axis such that the left-

bottom vertex of Hi coincides Sj ;
5: Rotate Ci by θ ∈ (0, π

3
] according to left-most position and

bottom-most position;

6: Record the number of hexagons to cover S every time;

7: end for
8: Choose the covering scheme with the minimum number of

hexagons.

Fig.5 shows an example of clustering and hexagon covering

scheme, which different colors represent different clusters and

hexagons with solid lines are generated scheme. We evaluate Alg. 2

is Section 7 and it greatly reduces the number of hexagons to cover

the targeted sensors as Fig. 8.

Figure 5: An example of clustering and hexagon covering.
The black hexagon is the original coverage, the red hexagon
is the coverage after rotation, and the red dotted hexagon is
removed after rotation.

5.3 Trajectory
Once the hexagons covering scheme is determined, we denote the

center point of each hexagon as P = {p1,p2, . . . ,pM }, and we need

to design flight trajectory that traverses all points pi ∈ P . We utilize

existing algorithms for the Travelling Salesman Problem (TSP), in

which a UAV starts from the base station (denote as p0), traverses
all points, and flies back to the station. There are many efficient

algorithms, such as Genetic algorithm [35], Simulated Annealing

algorithm [27], and Ant Colony Optimization (ACO) algorithm [10].

We choose the ACO algorithm in Adler to design UAV’s trajectory.

Note that a UAV has limited energy and denote the largest distance

it can fly as ∆. Wemodify the ACO algorithm to find set of minimum

cardinality {P1, P2, . . . Pk } where Pi ⊆ P , Pi
⋂

Pj = ∅, i , j, such
that the flight distance of a UAV starting at p0, traversing all points

in set Pi , and flying back to p0 is less than ∆.

5.4 Data Gathering
A sensor only needs to send its data to a UAV that is within com-

munication range. In Adler, a sensor has three modes: sleep, listen,

transmit; it switches between sleep and listen to save energy. When

a UAV arrives at a center point of a hexagon, it hovers there and

broadcasts a beacon message. Once a sensor receives a beacon mes-

sage from the UAV, it switches to transmit mode and sends data to

the UAV according to p-persistent CSMA protocol [31] (to reduce

collision with other transmissions). Then, it returns to sleep or

listen mode as normal. The UAV hovers at the point to receive data

for a given time, and then it flies to next center point.

5.5 Discussions
The UAV-based gathering method has many advantages. Compared

to data gathering through a multi-hop network, the UAV-based

method could save a sensor’s energy hugely which overcomes

energy hole problem in a multi-hop network (as stated in Fig. 10 in

Section 7.4). In addition, the UAV-based method suffers from less

communication collision since a sensor only needs to communicate

with the UAV. Compared to a mobile vehicle gathering method,

the UAV-based method designs a better trajectory since it does

not need to consider complicated ground conditions. In addition, a

UAV has a faster speed to collect data. As evaluated in Section 7.3,

Adler achieves 10% higher package receiving ratio in Fig. 9. The

disadvantage of the method is: the UAV has to fly to reach sensors

and the latency to collect all data is limited to flight distance and

speed. Gathering through a multi-hop network could be faster, but

has the instinctive energy problem. Actually, if more UAVs are

utilized in gathering, each UAV is responsible for gathering sensors

in a divided area and the composed network among UAVs could

largely reduce gathering latency. It would be a promising way to

combine a sensor network and a UAV network in future.

6 THE NETWORK RECONFIGURATION
APPLICATION

Network reconfiguration is essential in a long-term sensor system,

such as upgrading applications (firmwares) for different missions or

updating some sensors’ parameters. Conventional floodingmethods

incur broadcast storm problem[37], which waste energy and require

massive retransmissions. In Adler, we implement network reconfig-

uration application by an UAV-based method. Similar to gathering,

a single UAV is able to realize the application, which can fly close

to a sensor and send data to it by point-to-point transmission. This

method does not incur broadcast storm problem obviously. We

formulate the network reconfiguration problem as follows:

Problem 3. Considering a 2D target area and N targeted sen-
sors {s1, s2, . . . , sN }, network reconfiguration is to update sensor si ’s
parameter or to upgrade its running application.

6.1 Overview of UAV-Based Reconfiguration
We present a UAV-based reconfiguration method in Adler, in which

a single UAV is dispatched to update each sensor’s data. Recon-

figuration is some kind opposite to gathering, since a UAV sends

data to a sensor in reconfiguration while a sensor sends data to a

UAV for gathering. Similarly, the method consists of three modules:

hexagon covering module divides target sensors into hexagons; tra-
jectory module determines UAV’s flight trajectory to traverse all

6

hexagons’ center point; and reconfiguration module updates sen-
sors’ parameters or upgrades its firmware. The UAV calls the API

multicast(nodeSet, data) to reconfigure sensors, and a sensor calls

the API load(firmware) of Section 3.3.

Actually, hexagon covering module and trajectory module are

the same as those in gathering application (Section 5). Hence, we

focus on network configuration design.

6.2 Network Reconfiguration
Network reconfiguration includes parameter update and firmware

upgrade. For example, the base station tries to modify a sensor’s

duty cycle setting, it is one kind of parameter update; if the base

station is to evaluate a new sensor algorithm, it would upgrade a

sensor’s executive program, which is one kind of firmware upgrade.

Parameter update: in order to configure parameters smartly,

a sensor node initializes a ‘.ini’ file in its flash memory, which

contains frequently-used parameters and settings. A sensor node

reads the ‘.ini’ file when it starts to work or receives a new ‘.ini’ file.

When a UAV hovers at the center point of a hexagon, it broadcasts

a beacon (parameter update) signal including a target sensor’s ID.

A sensor tunes to listen mode periodically as stated in Section 5.4; if

it receives a parameter update signal containing its ID, it transmits

with an acknowledgment signal and waits for the update. Then, the

UAV sends corresponding ‘.ini’ file to the sensor; once it is finished,

the sensor saves the file in its flash memory and reboots, while the

UAV sends another parameter update signal for other sensors to

continue the process.

Firmware upgrade: we use OTA programming to upgrade a

sensor’s firmware, which sends the firmware to a sensor node and

makes the firmware run. The firmware is stored in form of an

Extensible Linking Format (ELF) file, and we modify Deluge [19],

a well-known data dissemination protocol to realize transmission

between a UAV and a target sensor. When the sensor receives the

ELF file, it decodes the file, loads to its code space and run it. The

difference with parameter update is: a parameter file is of small size

which can be transmitted directly, while the firmware is of much

larger size which needs to be transmitted by an efficient protocol

ensuring file completeness and reliability.

6.3 Discussions
The UAV-based network configuration method has many advan-

tages. Conventional methods utilize a multi-hop OTA programming

method to upgrade the firmware, such as Deluge, and Rateless Del-

uge [12]. However, these methods cost much energy of a (relay)

sensor, since it has to forward the firmware to other sensors hop

by hop. The firmware is of large size and multiple retransmissions

are needed if the collision exists or a part of the file gets lost. The

UAV-based method greatly reduces energy cost and package loss

ratio. As evaluated in Section 7.4, Adler reduces sensors’ average en-

ergy consumption by about 80% as Fig. 11. In addition, this method

allows updating different parameters for different sensors. For ex-

ample, to run a clustering-based gathering algorithm[33], the base

station could generate clusters in a centralized way, and sends a

UAV to update cluster information to sensors with different roles,

such as some sensors receive a parameter as ‘cluster-head’, while

some get a parameter as ‘cluster-member’. Existing clustering meth-

ods consume much energy and the generated clusters are only a

local optimal solution.

7 EVALUATION
7.1 Evaluation Setup
The design of Adler supports multiple UAVs for general applications.

Since current three implemented applications only require one

single UAV, we evaluate the applications, localization, gathering

and network reconfiguration, by three UAVsworking independently

with 20 sensors for each application.We also evaluate Adler through

simulations for a large scale sensors set.

7.1.1 Experiment Platform. We use three DJI M100 UAVs
2
and

60 EZ240[18] in the experiments. Each UAV carries an airborne

computer with the Intel NUC Kit NUC7I5BNK
3
, which contains an

Intel Core i5-7260U processor with 8GB RAM and 240G SSD. The

EZ240 sensor nodes uses MSP430F1611 as the microprocessor and

it is equipped with 1K RAM, 48K ROM and 1 M Flash. IEEE 802.15.4

protocol is utilized as the communication protocol.

The software of the airborne computer is running on Ubuntu

16.04 Operating System (OS), and we build the development en-

vironment based on the Robot Operating System (ROS) and DJI

Onboard SDK. The sensors are running Contiki OS with Contiki

MAC[8] the Radio Duty Cycle Control module and CSMA [31] as

media access control protocol.

In the experiments, we set UAVs’ flying speed as 8m/s , hovering
height as 5m and assume the UAV hovers at a waypoint for 5s to
collect or distribute data. For each application, we evaluate Adler

by one UAV and 20 sensors.

7.1.2 Localization. To compute the value ofA in Eqn. (1), we cal-

ibrate RSSI at 1m away position. Then, we implement the UAV-based

localization algorithm in Adler. The UAV flies by a predetermined

trajectory and calculates sensors’ positions according to RSSI values

of sensors. We compare our method with localization methods by

ground anchor nodes[14].

7.1.3 Gathering. We implement the UAV-based gatheringmethod

in Adler for a real experiment. We evaluate several notable algo-

rithms (SPIN[31], DAWN[34], MINT[42], LEACH[16], EBRP[33])

on 20 sensors that are distributed randomly in a 64m× 64m area. To

evaluate the reliability of the system, packages are not retransmitted

if they get lost in transmission.

According to the UAV-based gathering method, we divide the

target area into clusters based on sensors’ positions. For each cluster,

we compute the minimum hexagon covering scheme by Alg. 2 and

design corresponding trajectory. In our simulations, we set the side

length of a hexagon as 15m.

7.1.4 Reconfiguration. In our experiments, we implement the

UAV-based reconfiguration method in Adler, including parameter

updating and firmware upgrading. To update parameters, we sent

100 packages to all sensors and each package’s size is 128 bytes; to

upgrade firmware, we implemented OTA by modifying Deluge and

sent a LED blink code of size 1274 bytes to all sensors for evaluation.

2
https://www.dji.com/cn/matrice100

3
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/

nuc7i5bnk.html

7

https://www.dji.com/cn/matrice100
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i5bnk.html
https://www.intel.com/content/www/us/en/products/boards-kits/nuc/kits/nuc7i5bnk.html

In simulation, we choose BLU[41] and DPMT[11] for comparison.

The cost energy of a sensor is calculated as Ei =
λ

ψ (d)ωr , where λ

is data size of the configuration file.

7.2 Evaluation metrics
We introduce some evaluation metrics used in our experiments.

Localization accuracy. We use the root-mean-square error

(RMSE) to evaluate the localization error:

RMSE = (
N∑
i=1

√
(xi − x̂i)2/(N × ru)), (3)

where xi and x̂i represents real and estimated coordinates for sensor

i respectively. N is the number of targeted nodes and ru is the

communication range.

Receiving Package Ratio (RPR). We use packet reception

probability model in [6] and introduce the metric RPR, which is the

ratio of received packages to total packages that are sent, represent-

ing the throughput of a network.

Latency. Latency is defined as total time cost for the UAV to

finish a mission, including traversing all targeted nodes, gathering

or reconfiguring sensors, and flying back to the base station.

Network lifetime.We adopt the energy model in [26]. Network

lifetime is defined as the elapsed time when the first sensor running

out of energy, which is an important metric of energy efficiency. If

the number of exhausted nodes increases, the network’s RPR would

be reduced.

Node Average Energy Cost (NAEC) computes average cost

of all sensors when a specific number of packages have been sent.

7.3 Performance

0 5 10 15 20 25

Distance(m)

90

85

80

75

70

65

60

55

50

45

R
S
S
I(

d
B

)

RSSI

ground-ground experiment

ground-ground curve fitting

air-ground experiment

air-ground curve fitting

environment noise

Figure 6: RSSI strength of air-ground communication is bet-
ter than that of ground-ground communication. RSSI be-
comes invalid when it is below environment noise −81.7dB.

Localization. As shown in Fig. 6, air-ground communication (the

UAV with a sensor) has a wider measuring range and suffers less

noise/interference than ground-ground communication (two sen-

sors or the UAV is on the ground). Therefore, UAV-based localization

method can achieve better accuracy than the methods using ground

landmark or anchor nodes. We measure Gaussian parameters of

noise distribution in both methods by experiments. Air-ground

experiment’s Gaussian noise scale is about 0.9250 while ground-

ground experiment’s Gaussian noise scale is 6.0866. Hence, our

method can achieve more accurate localization as shown in Fig. 7:

RMSE of the UAV-based method is reduced 78.4% than that of the

method using ground anchor nodes.

30 20 10 0 10 20 30

0

10

20

30

40

50 actual position

estimated position

(a) UAV-based method (air-ground
communication). RMSE is 0.02408

30 20 10 0 10 20 30

0

10

20

30

40

50 actual position

estimated position

(b) Ground anchor method (ground-
ground communication). RMSE is
0.11135

Figure 7: The UAV-based method greatly improves localiza-
tion accuracy, which reduces 78.4% RMSE compared with
ground anchor method.

50 0 50 100

60

40

20

0

20

40

60

80 sensor

waypoint

(a) Hexagon covering scheme.
Hexagon count is 16, gathering
latency is 126s

50 0 50 100

60

40

20

0

20

40

60

80 sensor

waypoint

(b)Hexagon covering scheme inAdler.
Hexagon count is 9, gathering latency
is 73s

Figure 8: Adler uses fewer hexagons to cover sensors and
greatly reduces gathering latency.

Gathering & Reconfiguration. We evaluate the fundamental step:

minimum hexagon covering algorithm of gathering and reconfig-

uration. We generate 100 sensors which are divided into three

clusters. As shown in Fig. 8a, sensors are covered by 16 hexagons;

while our method only utilizes 9 hexagons to cover them, as shown

in 8b. Correspondingly, the gathering latency is reduced from 126s
(in Fig. 8a) to 73s (in Fig. 8b); while the parameter updating latency

for reconfiguration is reduced from 132s to 75s .

0 100 200 300 400 500 600 700

Time

0.0

0.2

0.4

0.6

0.8

1.0

R
e
ce

iv
e
d
 P

a
ck

a
g
e
 R

a
te

Adler

DAWN

MINT

EBRP

Figure 9: Adler greatly promotes RPR among all methods.

Gathering. We compare Adler with three gathering methods

(DAWN, MINT, EBRP) and Adler achieves highest RPR among them

during the whole procedure, as shown in Fig. 9. Both MINT and

EBRP gather data through a multi-hop network and transmission

8

collisions lead to lower RPR than Adler; when time goes on (as

x-axis), some sensors run out of energy and RPR of both methods

go down quickly. DAWN gathers data by a mobile sink but it has

lower RPR than Adler due to its need of road; wherever there is no

road, sensors compose a multi-hop structure leading to lower RPR.

7.4 Energy Consumption
Gathering. A multi-hop gathering method faces energy hole

problem and EBRP is a cluster-based method to alleviate it. We

compare EBRP and Adler and simulations show Adler achieves

about 10% higher receiving package ratio. After 1563 rounds of

gathering, as Fig. 10 shows, sensors using Adler have very uniform

residual energy value, while running EBRP, sensors that are close

to the base station have less residual energy than sensors that

are far away. This is because a multi-hop based method has its

intrinsic deficiency and the UAV-based method could solve it with

conciseness and effectiveness.

Figure 10: Adler solves energy hole problemwhich hasmore
uniform residual energy distribution than EBRP.

Reconfiguration. We compare the UAV-based method with a

multi-hop flooding method[11] in the experiment. As shown in

Fig. 11, sensors that have different distances to the base station (as

x-axis) have similar energy cost in Adler, while sensors that are

close to the base station cost much more energy in the multi-hop

flooding method. Notice that, in the multi-hop flooding method,

sensors that are far away from the base station also consume more

energy than Adler. This is because sensors have to rebroadcast the

received messages in the multi-hop flooding method, while they

only need to receive the message from the UAV in Adler.

20 40 60 80 100 120
Distance to Base Station / m

0

100

200

300

400

500

600

En
er

gy
 C

on
su

m
pt

io
n

Pe
r N

od
e

/ m
J Multi-hop

Adler

Figure 11: Adler consumes less energy than multi-hop
method in reconfiguration.

7.5 Scalability
Gathering. We compare a sensor network’s lifetime with four

notable algorithms (DAWN, MINT, LEACH, EBRP) when the num-

ber of sensors increases in our simulations. As shown in Fig. 12a,

Adler achieves the longest lifetime compared to others, and the

lifetime in Adler is irrelevant to network size. This is because a sen-

sor only needs to communicate once with the UAV in each round

of gathering. The other methods have shorter lifetime because

retransmissions in a multi-hop based method cost more energy.

10 20 30 40 50 60 70 80 90 100

Node Number

0

100

200

300

400

500

600

700

800

900

Li
fe

 T
im

e

Adler

DAWN

LEACH

MINT

EBRP

(a) Gathering

20 30 40 50 60 70 80 90 100

Node Number

0

100

200

300

400

500

600

700

800

900

Li
fe

 T
im

e

Adler BLU DPMT

(b) Reconfiguration

Figure 12: Adler holds better scalability when the number of
sensors increases.

Reconfiguration. We compare Adler with BLU and DPMT. Fig.

12b shows a similar phenomenon as gathering which Adler greatly

prolongs a sensor network’s lifetime.

7.6 Resilience

0 10 20 30 40 50 60 70

Energy Exhausted Node Number

0

200

400

600

800

1000

1200

1400

1600

R
e
ce

iv
e
d
 P

a
ck

a
g
e
 N

u
m

b
e
r

Adler

MINT

EBRP

SPIN

Figure 13: Adler is more resilient if some sensors run out of
energy.

We evaluate network resilience on gathering application. When

some nodes run out of energy (we tune them to sleep mode in

the simulation) and Fig. 13 shows Adler still achieves the highest

received package number among these methods. Similarly, the local-

ization and network reconfiguration applications are also resilient

as energy exhausted nodes increase.

8 CONCLUSION
In this paper, we implemented Adler, a real UAV-enabled sensor

system which achieved resilience, high performance and energy

efficiency at the same time for general applications. Three important

applications: localization, gathering and network reconfiguration

are realized in Adler by UAV-basedmethods. Adler greatly increased

localization accuracy, reduced gathering latency, and prolonged

network lifetime through experiments and simulations. Adler can

be used to implement a general application easily and it has the

potential to realize globalization in a distributed sensor system.

9

REFERENCES
[1] Daniel Aguayo, John Bicket, Sanjit Biswas, Glenn Judd, and Robert Morris. 2004.

Link-level measurements from an 802.11 b mesh network. In ACM SIGCOMM
Computer Communication Review, Vol. 34. ACM, 121–132.

[2] Joe Albowicz, Alvin Chen, and Lixia Zhang. 2001. Recursive position estimation

in sensor networks. In Network Protocols, 2001. Ninth International Conference on.
IEEE, 35–41.

[3] Giuseppe Anastasi, Marco Conti, Mario Di Francesco, and Andrea Passarella. 2009.

Energy conservation in wireless sensor networks: A survey. Ad hoc networks 7, 3
(2009), 537–568.

[4] Juan Carlos SuÃąrez BarÃşn andMarco Javier SuÃąrez BarÃşn. 2014. Application

of SHT71 sensor to measure humidity and temperature with a WSN. In Sensors.
[5] Dan Chen, Zhixin Liu, Lizhe Wang, Minggang Dou, Jingying Chen, and Hui Li.

2013. Natural disaster monitoring with wireless sensor networks: a case study of

data-intensive applications upon low-cost scalable systems. Mobile Networks and
Applications 18, 5 (2013), 651–663.

[6] Zhuangbin Chen, Anfeng Liu, Zhetao Li, Young-June Choi, Hiroo Sekiya, and

Jie Li. 2017. Energy-efficient broadcasting scheme for smart industrial wireless

sensor networks. Mobile Information Systems 2017 (2017).
[7] Liliya Demidova, Yulia Sokolova, and Evgeny Nikulchev. 2015. Use of fuzzy

clustering algorithms ensemble for SVM classifier development. International
Review on Modelling and Simulations 8, 4 (2015), 446–457.

[8] Adam Dunkels. 2011. The contikimac radio duty cycling protocol. (2011).

[9] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. 2004. Contiki-a lightweight

and flexible operating system for tiny networked sensors. In Local Computer
Networks, 2004. 29th Annual IEEE International Conference on. IEEE, 455–462.

[10] Daoxiong Gong and Xiaogang Ruan. 2004. A hybrid approach of GA and ACO

for TSP. In Intelligent Control and Automation, 2004. WCICA 2004. Fifth World
Congress on. 2068–2072 Vol.3.

[11] Song Guo and Oliver Yang. 2004. Multicast lifetime maximization for energy-

constrained wireless ad-hoc networks with directional antennas. In GLOBE-
COM’04. IEEE, Vol. 6. IEEE, 4120–4124.

[12] Andrew Hagedorn, David Starobinski, and Ari Trachtenberg. 2008. Rateless

deluge: Over-the-air programming of wireless sensor networks using random

linear codes. In Proceedings of the 7th international conference on Information
processing in sensor networks. IEEE Computer Society, 457–466.

[13] Guangjie Han, Huihui Xu, TrungQDuong, Jinfang Jiang, and Takahiro Hara. 2013.

Localization algorithms of wireless sensor networks: a survey. Telecommunication
Systems (2013), 1–18.

[14] Guangjie Han, Huihui Xu, Jinfang Jiang, Lei Shu, Takahiro Hara, and Shojiro

Nishio. 2013. Path planning using a mobile anchor node based on trilateration in

wireless sensor networks. Wireless Communications and Mobile Computing 13,

14 (2013), 1324–1336.

[15] Guangjie Han, Chenyu Zhang, Jaime Lloret, Lei Shu, and Joel JPC Rodrigues.

2014. A mobile anchor assisted localization algorithm based on regular hexagon

in wireless sensor networks. The Scientific World Journal 2014 (2014).
[16] Wendi Rabiner Heinzelman, Anantha Chandrakasan, andHari Balakrishnan. 2000.

Energy-efficient communication protocol for wireless microsensor networks.

In System sciences, 2000. Proceedings of the 33rd annual Hawaii international
conference on. IEEE, 10–pp.

[17] Dac-Tu Ho, Esten Ingar Grøtli, PB Sujit, Tor Arne Johansen, and João Borges

Sousa. 2015. Optimization of wireless sensor network and UAV data acquisition.

Journal of Intelligent & Robotic Systems 78, 1 (2015), 159.
[18] Tingpei Huang, Haiming Chen, Zhaoliang Zhang, and Li Cui. 2012. EasiPLED:

Discriminating the causes of packet losses and errors in indoor WSNs. In GLOBE-
COM, 2012 IEEE. IEEE, 487–493.

[19] Jonathan W Hui and David Culler. 2004. The dynamic behavior of a data dis-

semination protocol for network programming at scale. In Proceedings of the 2nd
international conference on Embedded networked sensor systems. ACM, 81–94.

[20] Imad Jawhar, Nader Mohamed, Jameela Al-Jaroodi, and Sheng Zhang. 2014.

A framework for using unmanned aerial vehicles for data collection in linear

wireless sensor networks. Journal of Intelligent & Robotic Systems 74, 1-2 (2014).
[21] Tyler Kersnovski, Felipe Gonzalez, and Kye Morton. 2017. A UAV system for

autonomous target detection and gas sensing. In Aerospace Conference, 2017.
[22] Kavi K Khedo, Rajiv Perseedoss, Avinash Mungur, et al. 2010. A wireless sensor

network air pollution monitoring system. arXiv preprint arXiv:1005.1737 (2010).

[23] Eunchan Kim, Sangho Lee, Chungsan Kim, and Kiseon Kim. 2010. Mobile beacon-

based 3D-localization with multidimensional scaling in large sensor networks.

IEEE Communications Letters 14, 7 (2010), 647–649.
[24] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,

Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. 2005. TinyOS: An

operating system for sensor networks. Ambient intelligence 35 (2005), 115–148.
[25] Hanshang Li, Ling Wang, Shuo Pang, and Massood Towhidnejad. 2014. A cross-

layer design for data collecting of the UAV-wireless sensor network system. In

Embedded and Ubiquitous Computing (EUC), 2014 12th IEEE International Confer-
ence on. IEEE, 242–249.

[26] Anfeng Liu, Xin Jin, Guohua Cui, and Zhigang Chen. 2013. Deployment guidelines

for achieving maximum lifetime and avoiding energy holes in sensor network.

Information Sciences 230 (2013), 197–226.
[27] Yi Liu, Shengwu Xiong, and Hongbing Liu. 2009. Hybrid simulated annealing

algorithm based on adaptive cooling schedule for TSP. In Acm/sigevo Summit on
Genetic and Evolutionary Computation. 895–898.

[28] Kay Soon Low,Win Nu NuWin, andMeng Joo Er. 2005. Wireless sensor networks

for industrial environments. In Computational Intelligence for Modelling, Control
and Automation, 2005 and International Conference on Intelligent Agents, Web
Technologies and Internet Commerce, International Conference on. IEEE.

[29] Andrew Mittleider, Brent Griffin, and Carrick Detweiler. 2016. Experimental anal-

ysis of a uav-based wireless power transfer localization system. In Experimental
Robotics. Springer, 357–371.

[30] Yi Jen Mon, Chih Min Lin, and Imre J Rudas. 2012. Wireless Sensor Network

(WSN) Control for Indoor Temperature Monitoring. Acta Polytechnica Hungarica
9, 6 (2012), 17–28.

[31] Asis Nasipuri, Jun Zhuang, and Samir R Das. 1999. A multichannel CSMA

MAC protocol for multihop wireless networks. In Wireless Communications and
Networking Conference, 1999. WCNC. 1999 IEEE, Vol. 3. IEEE, 1402–1406.

[32] Tina R Patil and SS Sherekar. 2013. Performance analysis of Naive Bayes and J48

classification algorithm for data classification. International Journal of Computer
Science and Applications 6, 2 (2013), 256–261.

[33] Fengyuan Ren, Jiao Zhang, Tao He, Chuang Lin, and Sajal K Das Ren. 2011. EBRP:

energy-balanced routing protocol for data gathering in wireless sensor networks.

IEEE Transactions on Parallel and Distributed Systems 22, 12 (2011), 2108–2125.
[34] ShaoJie Tang, Jing Yuan, XiangYang Li, Yunhao Liu, GuiHai Chen, Ming Gu,

Jizhong Zhao, and Guojun Dai. 2010. DAWN: energy efficient data aggregation

in WSN with mobile sinks. In Quality of Service (IWQoS), 2010 18th International
Workshop on. IEEE, 1–9.

[35] Zhou Tao. 2008. TSP Problem Solution Based on Improved Genetic Algorithm.

In Fourth International Conference on Natural Computation. 686–690.
[36] Carlos A Trasviña-Moreno, Rubén Blasco, Álvaro Marco, Roberto Casas, and

Armando Trasviña-Castro. 2017. Unmanned aerial vehicle based wireless sensor

network for marine-coastal environment monitoring. Sensors 17, 3 (2017), 460.
[37] Yu-Chee Tseng, Sze-Yao Ni, Yuh-Shyan Chen, and Jang-Ping Sheu. 2002. The

broadcast storm problem in a mobile ad hoc network. Wireless networks 8, 2/3
(2002), 153–167.

[38] Leandro A Villas, Daniel L Guidoni, and Jo Ueyama. 2013. 3d localization in

wireless sensor networks using unmanned aerial vehicle. In Network Computing
and Applications (NCA), 2013 12th IEEE International Symposium on. IEEE.

[39] Chengliang Wang, Fei Ma, Junhui Yan, Debraj De, and Sajal K Das. 2015. Ef-

ficient aerial data collection with uav in large-scale wireless sensor networks.

International Journal of Distributed Sensor Networks 11, 11 (2015), 286080.
[40] Geoffrey Werner-Allen, Jeff Johnson, Mario Ruiz, Jonathan Lees, and Matt Welsh.

2005. Monitoring volcanic eruptions with a wireless sensor network. In Wireless
Sensor Networks, 2005. Proceeedings of the Second European Workshop on. IEEE.

[41] Jeffrey E Wieselthier, Gam D Nguyen, and Anthony Ephremides. 2002. Energy-

efficient broadcast and multicast trees in wireless networks. Mobile networks and
applications 7, 6 (2002), 481–492.

[42] Alec Woo, Terence Tong, and David Culler. 2003. Taming the underlying chal-

lenges of reliable multihop routing in sensor networks. In Proceedings of the 1st
international conference on Embedded networked sensor systems. ACM, 14–27.

[43] Xiaobing Wu, Guihai Chen, and Sajal K Das. 2008. Avoiding energy holes in

wireless sensor networks with nonuniform node distribution. IEEE Transactions
on parallel and distributed systems 19, 5 (2008), 710–720.

[44] Jianqiao Xiong, Qin Qin, and Kemin Zeng. 2014. A distance measurement wireless

localization correction algorithm based on RSSI. In Computational Intelligence and
Design (ISCID), 2014 Seventh International Symposium on, Vol. 2. IEEE, 276–278.

[45] Zhenhui Yuan, Xiwei Huang, Lingling Sun, and Jie Jin. 2016. Software defined

mobile sensor network for micro UAV swarm. In Control and Robotics Engineering
(ICCRE), 2016 IEEE International Conference on. IEEE, 1–4.

[46] Cheng Zhan, Yong Zeng, and Rui Zhang. 2017. Energy-efficient data collection

in UAV enabled wireless sensor network. arXiv preprint arXiv:1708.00221 (2017).
[47] Xiaoyang Zhong, Miguel Navarro, German Villalba, Xu Liang, and Yao Liang.

2014. MobileDeluge: Mobile code dissemination for wireless sensor networks. In

MASS. IEEE, 363–370.

10

	Abstract
	1 Introduction
	2 Related work
	3 Design of Adler
	3.1 System Overview
	3.2 Adler Architecture
	3.3 Adler API

	4 The Localization Application
	4.1 Overview of UAV-based Localization
	4.2 Grid and Trajectory
	4.3 Localization
	4.4 Discussions

	5 The Gathering Application
	5.1 Overview of UAV-Based Gathering
	5.2 Hexagon Covering
	5.3 Trajectory
	5.4 Data Gathering
	5.5 Discussions

	6 The Network reconfiguration Application
	6.1 Overview of UAV-Based Reconfiguration
	6.2 Network Reconfiguration
	6.3 Discussions

	7 Evaluation
	7.1 Evaluation Setup
	7.2 Evaluation metrics
	7.3 Performance
	7.4 Energy Consumption
	7.5 Scalability
	7.6 Resilience

	8 Conclusion
	References

