
Postprint of article in IEEE Transactions on Software Engineering 37 (5): 616–634 (2011)

A Comparison of
Tabular Expression-Based Testing Strategies

Xin Feng, David Lorge Parnas, Fellow, IEEE,

T. H. Tse, Senior Member, IEEE, and Tony O’Callaghan

Abstract—Tabular expressions have been proposed as a notation to document mathematically precise but readable software specifications.

One of the many roles of such documentation is to guide testers. This paper 1) explores the application of four testing strategies (the

partition strategy, decision table-based testing, the basic meaningful impact strategy, and fault-based testing) to tabular expression-based

specifications, and 2) compares the strategies on a mathematical basis through formal and precise definitions of the subsumption relationship.

We also compare these strategies through experimental studies. These results will help researchers improve current methods and will enable

testers to select appropriate testing strategies for tabular expression-based specifications.

Index Terms—Tabular expression, test case constraint, subsume, unconditionally subsume, conditionally subsume.

F

1 INTRODUCTION

In past decades, researchers, and engineers have endeav-
ored to improve the precision, completeness, and consis-

tency of documentation in software engineering. As math-
ematics is the best way to achieve precision, mathemati-
cal expressions often occur throughout the documentation.
Software engineering has benefited from the use of math-
ematics. However, conventional mathematical expressions
used in software engineering are usually complicated and
hard to read and verify.

As an improvement, a tabular representation [20], [21],
[22], [33], [36], [37], [40], [44] has been proposed to model
such mathematical expressions in software specifications.
When compared with traditional mathematical expressions,
this representation improves readability and makes the doc-

c© 2009 IEEE. This material is presented to ensure timely dissemination of
scholarly and technical work. Personal use of this material is permitted. Copyright
and all rights therein are retained by authors or by other copyright holders.
All persons copying this information are expected to adhere to the terms and
constraints invoked by each author’s copyright. In most cases, these works may
not be reposted without the explicit permission of the copyright holder. Permission
to reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.
This research is sponsored by Science Foundation Ireland (SFI) under grants
01/P1.2/C009 and 03/CE3/1405, and the General Research Fund of the Research
Grants Council of Hong Kong under project no. 717308.

• Xin Feng worked with the Software Quality Research Laboratory, University
of Limerick, Ireland and is now with the Division of Science and Tech-
nology, United International College, Zhuhai, Guangdong, China. Email:
xinfeng@uic.edu.hk. Phone: (+86) 756 362 0030.

• David Lorge Parnas worked with the Software Quality Research Laboratory,
University of Limerick, Ireland and is retired in Ottawa Canada. Email:
david.parnas@ul.ie. Phone: (+1) 613 249 8038.

• T. H. Tse is with the Department of Computer Science, The University of
Hong Kong, Pokfulam, Hong Kong. Email: thtse@cs.hku.hk. Phone: (+852)
2859 2183.

• Tony O’Callaghan was with the Interaction Design Centre, University of
Limerick, Ireland. Email: tony.ocallaghan@ul.ie. Phone: (+353) 87 746 1906.

umentation concise. In addition, it is easier to check the con-
sistency and completeness of specifications in tabular ex-
pression form. This notation has proven to be useful in var-
ious examples in the industry, including the US Navy’s A-7
aircraft [2], [18], the Darlington Nuclear Power Station [34],
[35], a Dell keyboard test program [3], and an Ericsson tele-
com software system [39]. These documents are used not
only by software engineers but also by software testers. The
tabular structure gives testers a clear idea of how the input
domain is divided, as well as the distinct boundary points
of each subdomain. With these features, Liu [28] proposed
the partition strategy for tabular expressions and Clermont
and Parnas [11] suggested the interesting point selection
strategy for test case generation; Peters and Parnas [38]
developed tools to generate test oracles automatically from
tabular expressions. Moreover, the tabular structure does
not exclude other testing strategies. This offers flexibility in
the application of testing strategies. Due to the high cost
of software testing and tight delivery schedules, it is often
impractical to apply all possible strategies. Furthermore,
some strategies may not guarantee additional confidence
in the software. Therefore, when several testing strategies
are available directly or indirectly for use with a tabular
expression-based specification, it will be highly beneficial
for testers to have guidelines that help them select and
apply the most effective strategy.

As tabular expressions can be viewed as a tabular form
of conventional mathematical expressions, testing strategies
based on conventional mathematical expressions can be
used with tabular expressions as well. Since tabular ex-
pressions are particularly useful in describing conditional
relationships between inputs and outputs, the correspond-
ing conventional mathematical expressions usually contain
several conditions with specific restrictions. More than 10
years ago, the basic meaningful impact strategy [46] was
proposed for Boolean specifications. In subsequent years,

Administrator
 HKU CS Tech Report TR-2009-19

2

fault-based testing [7], [25], [26], [27], [29], [31] that gener-
ates test data from Boolean specifications was developed.
Researchers in fault-based testing have established a mature
hierarchy diagram of fault classes. Both the basic meaning-
ful impact strategy and fault-based testing for Boolean spec-
ifications have been demonstrated to be effective through
experimentation. Other strategies such as MC/DC [10] and
MUMCUT [8] have also been suggested. Although MC/DC
was not originally proposed for Boolean specifications, it
does share similar principles with the basic meaningful
impact strategy. The MUMCUT strategy has been evaluated
in the context of fault-based testing [27] and extended
by considering undetected mutation patterns collected in
an experimental study [42]. A comparative study between
MC/DC and MUMCUT was conducted by Yu and Yau [48].
Kaminski et al. [24] also compared a number of logic testing
methods including the MUMCUT strategy, MAX A, and
MAX B. MAX A and MAX B are extensions of the basic
meaningful impact strategy.

The hierarchy diagram of fault classes in [27] illustrates
the relationships among fault classes. (The diagram is re-
produced in Fig. 1 in Section 3.6.) The figure shows that test
cases covering the LOF and LIF classes of faults can also
detect the other fault classes in the diagram. It is, therefore,
worth examining fault-based testing for the LOF and LIF
classes of faults.

Since the relationships between inputs and outputs in
tabular expressions are very similar to the correspondences
between input conditions and actions in decision table-
based testing [23], it is appropriate to apply this method
to tabular expressions.

As for the partition strategy [28] and the interesting point
selection strategy for tabular specifications [11], we pick
only the former because the latter selects special boundary
points for stress testing.

Thus, as an initial exploration of test case generation
from tabular expressions, we compare four testing strate-
gies: the partition strategy, decision table-based testing, the
basic meaningful impact strategy, and fault-based testing
for LOF and LIF faults. The basic meaningful impact strat-
egy and fault-based testing for Boolean specifications work
on single Boolean expressions, while decision table-based
testing creates a decision table from a specification. Hence,
these strategies cannot be used for the tabular expressions
directly. This paper provides algorithms to apply these
strategies to tabular expressions and express them in terms
of test case constraints.

Testing strategies can be compared using several kinds
of measures, among which coverage and fault classes are
popularly used.

1. Coverage. Coverage is a metric of completeness with
respect to a test selection criterion [5]. This metric
is mostly used to compare source code-based testing
strategies such as all-du-paths, all-uses, all-p-uses, all-
c-uses, all-paths, branch, and statement coverage crite-
ria [5]. A diagram that illustrates the subsumption
relationships of these strategies can be found in [5]
and [45]. The all-paths strategy is the strongest among

these strategies, while all-du-paths is the strongest data
flow testing strategy. This metric is not only used in
source code-based testing, but can also be used in some
specification-based testing strategies such as equiva-
lence class testing strategies. Consider two equivalence
classes {x | x ≥ 5} and {x | x < 5}. At least two test
cases are generated, one from each equivalence class. If
the relations that define the classes are considered, the
equivalence class {x | x ≥ 5} can be further separated
into two equivalence classes {x | x > 5} and {x | x = 5}.
The latter has better coverage of the input domain [23].

2. Fault classes. Fault classes have often been used
to measure fault-based testing strategies. Fault-based
testing seeks to demonstrate that prescribed faults are
absent in a program [29]. Hence, it is usually taken as
a source code-based testing strategy. In recent years,
this strategy has been extended to generate test cases
from Boolean specifications [7], [25], [26], [27], [31].
Arithmetic operator faults in source code [1], [13],
[19], [43] and literal insertion faults (LIF) in a spec-
ification [25], [27] are examples of fault classes. The
subsumption relationship of the fault-based strategies
has been verified through experimentation [12] and by
the study of the fault detection conditions [25], [27],
[31].

It has been found that fault-based testing strategies
based on some fault classes are more effective than
those based on others. In [25], [27], [31], hierarchy
diagrams show a partial ordering of fault classes that
represents the subsumption relationship of the corre-
sponding testing strategies. Test cases that reveal faults
of the classes at lower levels of the diagrams can reveal
faults of the classes at higher levels. Intuitively, a strat-
egy that focuses on fault classes at lower levels should
be more effective. However, the prerequisites are that
faults of the classes at lower levels can exist and that
a specification with such faults is not equivalent to the
original specification. This is not always the case.

In addition, other measures (such as the P-measure [47],
E-measure [9], and F-Measure [6]) have been proposed and
are mainly used in comparing partition and random testing
strategies. Some papers [4] have compared the effectiveness
of testing strategies with respect to costs as well.

Since the objective of this paper is to compare the effec-
tiveness of detecting software faults, we adopt and improve
the following definition that has been commonly used to
compare testing strategies:

Definition 1 (Subsumption): Criterion C1 subsumes crite-
rion C2 if every test suite that satisfies C1 also satisfies C2.

We can see that comparisons based on coverage and fault
classes follow this definition. In general, when criterion
C1 subsumes criterion C2, C1 is better at detecting faults.
However, as pointed out in [15], this is not guaranteed.
This also happens in fault-based testing when faults cannot
be found for the classes at lower levels. It is possible
to determine the subsumption relationship of two testing
strategies that are applied to a concrete specification. Alter-
natively, subsumption relationships can be related to a class

3

TABLE 1

Function DayError in tabular expression (inverted)

DayError(day, month, year) ≡
T [2]

true false

MonthType(month) = M 31 day < 1 ∨ day > 31 day ≥ 1 ∧ day ≤ 31
MonthType(month) = M 30 day < 1 ∨ day > 30 day ≥ 1 ∧ day < 30
MonthType(month) = M 28 29 day < 1 ∨ (day > 29 ∧

YearType(year) = LeapYear) ∨
(day > 28 ∧ YearType(year) =
CommonYear)

day ≥ 1 ∧ ((day ≤ 29 ∧
YearType(year) = LeapYear) ∨
(day ≤ 28 ∧ YearType(year) =
CommonYear))

T [1] T [0]

of specifications or to all specifications. A testing strategy
subsuming another testing strategy on a single program
does not mean that this subsumption relationship can be
extended to a class of specifications or to all specifications.
It is possible that a subsumption relationship holds with
respect to a certain condition.

If this subsumption relationship changes when these test-
ing strategies are applied to different specifications, testers
will be uncertain with respect to the choice of testing
strategies. To avoid this uncertainty, we will improve the
above definition by giving formal and precise definitions of
the subsumption relationship. The new definitions aim to
help testers obtain a clearer understanding of subsumption
relationships and the necessary conditions that support
them.

Several types of tables have been defined in [33] and [44].
This paper mainly discusses normal tables in two dimen-
sions. A discussion relating to other table types and higher
dimensions will be provided in the conclusion.

2 TABULAR EXPRESSIONS

Tabular expressions are a way to improve the readability of
mathematical expressions. The “divide-and-conquer” struc-
ture of the table notation not only provides software engi-
neers with clear relationships between inputs and outputs,
but also helps them check the consistency and completeness
of documents by inspecting the rows and columns only. It
is easier to use the expression without evaluating all the
subexpressions. Let us consider the following example:

DayError(year, month, day)

≡ MonthType(month) = M 31 ∧ (day < 1 ∨ day > 31) ∨
MonthType(month) = M 30 ∧ (day < 1 ∨ day > 30) ∨
MonthType(month) = M 28 29 ∧
(day < 1 ∨ (day > 29 ∧ YearType(year) = LeapYear) ∨
(day > 28 ∧ YearType(year) = CommonYear)).

The expression can be written in tabular notation as illus-
trated in Table 1.

When compared with the tabular notation, the previous
form is typically more difficult to read and verify [33]. Two
other specification examples that use tabular expressions
are given in Appendix A. More examples can be found
in [21], [33], and [38].

Tabular expressions are defined as an indexed set [17] of
grids, and a grid is an indexed set of expressions [33], [44].

There are several table types, such as normal, inverted, and
tree-structured [33], [44]. The specification in Table 1 uses
an inverted table type; the MonthType table (see Fig. 2 in
Appendix A) is a tree-structured table, and the Price table
(see Fig. 3 in Appendix A) is a normal table. It has been
shown that one table form can be transformed to another. In
Appendix B, for instance, we have transformed the inverted
table for DayError presented in Table 1 into both a tree-
structured table and a normal table. More examples of table
transformations can be found in [21], [33], [41], and [49].

Table 2 is the general format of a two-dimensional m×n

normal table. There are three grids in this table: T [0], T [1],
and T [2]. T [0] is the main grid; T [1] and T [2] are the predicate
grids. The expressions in grids T [1] and T [2] are predicate
expressions. The expressions in grid T [0] are evaluation ex-
pressions, which can be evaluated to give the values of
the target function. Each such expression is used when
the corresponding row and column predicates are both
true. The expressions in the main grid might be undefined;
this would occur if the conjunction of the corresponding
predicates was false or outside of the domain of the function
defined by the table.

TABLE 2

An m × n normal table

T [2]
T [2][1] . . . T [2][j] . . . T [2][n]

T [1][1] T [0][1, 1] . . . T [0][1, j] . . . T [0][1, n]
.

T [1][i] T [0][i, 1] . . . T [0][i, j] . . . T [0][i, n]
.

T [1][m] T [0][m, 1] . . . T [0][m, j] . . . T [0][m, n]
T [1] T [0]

For ease of presentation, we use
Vl

k=1pk to denote p1 ∧

p2∧· · ·∧pl and
Wl

k=1pk to denote p1∨p2∨· · ·∨pl. In a normal
table, the grids T [1] and T [2] must be proper, that is, for
any input, T [1][i] ∧ T [1][j] = false if i 6= j and

Wm

k=1T [1][k] =

true, where m is the number of cells in T [1]. Here, T [0][i, j]

is the expression to be evaluated if T [1][i] ∧ T [2][j] is true
with respect to an assignment of values to the variables.
We call T [1][i] ∧ T [2][j] an evaluation condition, denoted by
Ei,j . Furthermore, Ei1,j1 ∧ Ei2,j2 = false if i1 6= i2 or j1 6= j2.

If an expression in grid T [0] is identical to another ex-
pression in the same grid, then they are called duplicated
evaluation expressions. Suppose the number of occurrences
of an evaluation expression is l (≥ 1), and T [1][ik] and
T [2][jk] (k = 1, 2, . . . , l; ik = 1, 2, . . . , m; and jk = 1, 2, . . . , n)

4

are predicates in T [1] and T [2] that correspond to the eval-
uation expressions. Then,

Wl

k=1(T [1][ik] ∧ T [2][jk]) is called a
combined evaluation condition when l > 1. For example, there
are three true and three false occurrences in the main grid of
Table 16 in Appendix B. In Section 3, some testing strategies
are based on combined evaluation conditions.

3 APPLICATION OF THE TESTING STRATEGIES

TO TABULAR EXPRESSION-BASED SPECIFICA-
TIONS

This section discusses the application of the four testing
strategies to tabular expression-based specifications. Every
strategy produces a list of test case constraints such that no
constraint is false. Test cases are obtained by finding values
that satisfy these constraints.

3.1 Irreducible DNF

Before we define an irreducible DNF, we need to introduce
a few fundamental definitions. Some of these are slightly
different from the standard concepts in Boolean algebra,
as we will explain below. A Boolean literal is usually
defined as a Boolean variable or its negation, or the Boolean
constant true or false. In this paper, we extend the definition
so that a Boolean literal can also be a simple predicate, that
is, it can be the result of a Boolean-valued function, or a
relational expression of the form e1 op e2, where op is a
relational operator and e1 and e2 are arithmetic expressions.
A Boolean expression consists of Boolean literals linked up by
the Boolean operators “∧” (which denotes “and”) and “∨”
(which denotes “or”). A conjunction is a Boolean expression
consisting of two subexpressions linked by the operator
“∧”. A disjunction is a Boolean expression consisting of two
subexpressions linked by the operator “∨”. A Disjunctive
Normal Form (DNF) is a Boolean expression consisting of
disjunctions of conjunctions of Boolean literals. For exam-
ple, given the Boolean variables a, b, and c, the expression
¬a ∨ (b ∧ c) is in DNF, but ¬a ∧ (b ∨ c) is not.

An irreducible DNF is a DNF such that the removal of any
Boolean literal or conjunction will change the truth table
of the expression [46]. Typically, the concept of “irreducible
DNF” is based on pure Boolean expressions. As highlighted
in [43], for instance, “A [pure] Boolean expression is a predi-
cate with no relational expressions.” In this paper, however,
the definition of “irreducible DNF” takes into account that a
Boolean literal can be a relational expression or the result of
a Boolean-valued function. Thus, a DNF that is irreducible
according to pure Boolean expressions may be reducible
when the Boolean literals are expanded to reveal the rela-
tional expressions. For example, (a ∧ b ∧ ¬c) ∨ (¬a ∧ b ∧ c) is
normatively an irreducible DNF because the removal of any
literal or conjunction will change its resultant truth table.
However, if a is “day > 31” and c is “day < 30”, then ¬c and
¬a are redundant.

Thereinafter, we will assume that Ei,j is an irreducible
DNF unless otherwise stated. The evaluation condition
Ei,j = T [1][i] ∧ T [2][j] can be written as

∨wi,j

k=1
(ck,1

i,j ∧ · · · ∧ c
k,sk

i,j

i,j),

where c
k,k′

i,j (k′ = 1, 2, . . . , sk
i,j is a Boolean literal, wi,j is the

number of terms in Ei,j , and sk
i,j is the number of Boolean

literals in the kth term of Ei,j . For example, if T [1][2] is (x >

3 ∨ x < 0) and T [2][3] is (y > 10), then E2,3 = x > 3 ∧ y >

10 ∨ x < 0 ∧ y > 10. In this expression, w2,3 = 2, s1
2,3 = s2

2,3 = 2,
c
1,1
2,3 = x > 3, c

1,2
2,3 = y > 10, c

2,1
2,3 = x < 0, and c

2,2
2,3 = y > 10.

TABLE 3

A 2 × 2 normal table

T [2]
x < 1 ∨ x > 31 x ≥ 1 ∧ x ≤ 31

y > 1 x x + 1
y ≤ 1 y y + 1
T[1] T [0]

3.2 An Illustration

In the following sections, we will discuss the application of
testing strategies to tabular expressions. A list of abstract
test case constraints is determined for each strategy. To help
readers understand the complex formulas, an example in
Table 3 is used to illustrate abstract test case constraints.
The following conditions that correspond to the individual
evaluation expressions can be derived from the table:

E1,1 = (y > 1 ∧ x < 1) ∨ (y > 1 ∧ x > 31),

E1,2 = y > 1 ∧ x ≥ 1 ∧ x ≤ 31,

E2,1 = (y ≤ 1 ∧ x < 1) ∨ (y ≤ 1 ∧ x > 31),

E2,2 = y ≤ 1 ∧ x ≥ 1 ∧ x ≤ 31.

In the above expressions, w1,1 = w2,1 = 2 and w1,2 = w2,2 = 1.

3.3 Partition Strategy for Tabular Expressions

Partition testing has been a widely used testing strategy for
many years [16], [30], [32]. The partition strategy for tabular
expressions was proposed by Liu [28] and his supervisor
von Mohrenschildt. This strategy takes advantage of the
features of tabular expressions, including the intentional
division of the input domain. It is actually an equivalence
class testing technique. The equivalence classes are more
obvious in a tabular expression specification than in con-
ventional mathematical expressions. The strategy requires
that each cell other than those undefined in the main grid
should be tried, that is, tested to see if the output is T [0][i, j]

with respect to an assignment that fulfills both T [1][i] and
T [2][j]. At most m× n test cases are sufficient to satisfy this
requirement. The resulting list of test case constraints is

〈

∨wi,j

k=1
(ck,1

i,j ∧ · · · ∧ c
k,sk

i,j

i,j)
〉

O(i,j),

where O(i, j) denotes i = 1, 2, . . . , m ∧ j = 1, 2, . . . , n ∧

T [0][i, j] 6= undefined for ease of presentation. This notation
is used throughout the rest of the paper.

The list of test case constraints derived from this formula
for Table 3 is

〈 (y > 1 ∧ x < 1) ∨ (y > 1 ∧ x > 31),

y > 1 ∧ x ≥ 1 ∧ x ≤ 31,

(y ≤ 1 ∧ x < 1) ∨ (y ≤ 1 ∧ x > 31),

y ≤ 1 ∧ x ≥ 1 ∧ x ≤ 31 〉.

5

3.4 Decision Table-Based Testing

Decision tables have been used to describe and analyze
complex logical relationships [23]. Decision table-based test-
ing identifies test cases from a decision table, where actions
and corresponding conditions that produce these actions
are described. A sample decision table is shown in Table 4.

TABLE 4

Decision table

Stubs Entries
1 2 3

Conditions c1 T F F
c2 − T F
a1

√

Actions a2
√

Impossible
√

As shown in Table 4, a decision table consists of four
parts. The vertical line separates the stubs portion on the left
from the entries portion on the right. The stubs portion lists
all the conditions that are used to check the inputs and all
the actions that should be done by the program. The entries
portion matches the actions with the corresponding combi-
nations of truth values of the conditions. The horizontal
line then separates the conditions portion from the actions
portion. Since a tabular expression also specifies the rela-
tionships between inputs and expected outputs, decision
table-based testing can be used to generate test data from
tabular expression-based specifications. In Table 4, there are
two possible actions, a1 and a2, depending on the conditions
c1 and c2 that are imposed on the inputs. Here, c1 and c2

are simple predicates. A “T” entry indicates true and an
“F” entry indicates false. With respect to an input, if c1 is
evaluated to true, the action is a1, irrespective of the value
that c2 is evaluated to; if c1 is evaluated to false and c2 is
evaluated to true, the action is a2. It is impossible that both
c1 and c2 are evaluated to false simultaneously.

TABLE 5

Inconsistency of columns

1 2 3 4
c1 − T T F
c2 T F T T
c3 T − F T

a1
√

a2
√ √ √

TABLE 6

Redundancy of columns

1 2 3
c1 − T T
c1 T F −
c2 T − F

a1
√

a2
√ √

The symbol “−” in these decision tables means “don’t
care,” that is, the truth values of corresponding conditions
do not affect the expected actions. For a deterministic pro-
gram, inconsistencies and redundancies should be avoided.

In a decision table with inconsistency, the same combination
of conditions may produce different actions. In Table 5, for
instance, columns 1 and 4 are inconsistent. According to
column 1, (c1 = F, c2 = T, c3 = T) will produce the action
a1. According to column 4, however, the same input will
produce the action a2. In a decision table with redundancy,
two columns contain the same values of conditions and the
same actions. In Table 6, for example, (c1 = T, c2 = F, c3 = F) is
implied in both columns 2 and 3. In fact, both redundancy
and inconsistency are caused by an overlap of conditions
in the entries portion. If there is no overlap of conditions
in different columns, redundancy and inconsistency are
avoided. To apply decision table-based testing in tabular
expressions using either normal tables or other types of
tables, we can list all the Boolean literals and actions and
then construct a decision table. Alternatively, we propose
the following algorithm for this application:

1. Transform a tabular expression into an equivalent con-
ventional mathematical expression, where each evalu-
ation expression corresponds to one evaluation condi-
tion.

2. Combine the evaluation conditions that correspond to
the same evaluation expression.

3. Transform each evaluation condition or combined eval-
uation condition into an equivalent expression in irre-
ducible DNF.

4. Create a constraint for every term in each expression
(in irreducible DNF) that is not equivalent to false. If the
expression in irreducible DNF is p1∨· · ·∨pk∨· · ·∨ph, the
constraint for term pk is pk ∧

Vh

k1=1,k1 6=k
¬pk1 , that is,

the data that satisfy the constraint evaluate pk to true
and all other terms in the expression evaluate to false.

If there is only one term in the expression, the constraint
is p1. If no evaluation expression is duplicated, step 2 can
be skipped. Appendix C illustrates how this algorithm is
applied to the DayError example.

Lemma 1: Consider an irreducible DNF expression p1 ∨

· · · ∨ pk ∨ · · · ∨ ph (h ≥ 1) not equivalent to false. At least one
solution can be found for the constraint pk ∧

Vh

k1=1,k1 6=k
¬pk1 ,

where k = 1, 2, . . . , h.
Lemma 1 will be used in the proof of Theorem 1. The

constraints in step 4 are not false. Each constraint obtained
from step 4 is equivalent to a combination of conditions
in one column of the corresponding decision table, that
is, the corresponding column in the decision table exists.
Moreover, in a tabular expression, since only one evaluation
condition or one combined evaluation condition is evalu-
ated to true at any one time and the test cases that satisfy
the constraint evaluate only one term to true and all other
terms to false, there is no overlap in constraints. In other
words, there is no overlap of columns in the corresponding
decision table. The resulting list of test case constraints
contains the constraints for every term in each evaluation
condition and each combined evaluation condition. The list
for an m × n normal table without duplicated evaluation
expressions is

D

ck,1
i,j ∧ · · · ∧ c

k,sk
i,j

i,j ∧
^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k),

6

where O(i, j, k) denotes O(i, j) ∧ k = 1, 2, . . . , wi,j for ease of
presentation. This notation is used throughout the rest of
paper.

The list of test case constraints derived from this formula
for Table 3 is

〈 y > 1 ∧ x < 1 ∧ ¬(y > 1 ∧ x > 31),

¬(y > 1 ∧ x < 1) ∧ y > 1 ∧ x > 31,

y > 1 ∧ x ≥ 1 ∧ x ≤ 31,

y ≤ 1 ∧ x < 1 ∧ ¬(y ≤ 1 ∧ x > 31),

¬(y ≤ 1 ∧ x < 1) ∧ y ≤ 1 ∧ x > 31,

y ≤ 1 ∧ x ≥ 1 ∧ x ≤ 31 〉.

3.5 The Basic Meaningful Impact Strategy

The basic meaningful impact strategy includes a family
of criteria that generate test cases from single Boolean
expressions [46]. A unique true point for a term in a Boolean
expression is a combination of truth values of Boolean
variables that evaluates the term to true and the other
terms to false. A near false point for a literal in a term is
a combination of truth values of Boolean variables that
evaluates the term (where the Boolean literal is negated)
to true and evaluates the other terms to false.

For example, a simple strategy may generate test cases
in the following steps:

1. Transform a Boolean expression to irreducible DNF.
2. For each term, create a set of unique true points.
3. For each Boolean literal, create a set of near false points.
4. Select one point from each set and construct a set of test

case constraints.

This strategy applies the ONE criterion. Since it is a straight-
forward implementation of the basic meaningful impact
strategy, it faithfully reflects all the principles of that strat-
egy. According to the experimental study in [46], the ONE
criterion is very effective in fault detection. Other enhanced
criteria (such as MAX-A and MAX-B) select more or all
points from each set. However, these criteria require signifi-
cantly more test cases than the ONE criterion. In this paper,
therefore, we will use the basic meaningful impact strategy
with the ONE criterion. To apply this strategy in tabular
expressions, the latter must first be transformed into their
equivalent conventional mathematical expressions. The fol-
lowing steps describe how to apply the strategy in tabular
expressions:

1–4. These steps are the same as those for decision
table-based testing except that lists are used
instead of sets.

5. Create a constraint for every Boolean literal in
each evaluation condition or combined eval-
uation condition. For an expression of the

form
Wh

k1=1(r
1
k1

∧ · · · ∧ r
dk1
k1

), the constraint for
rl

k (k = 1, 2, . . . , h and l = 1, 2, . . . , dk) is ¬rl
k ∧

Vdk

l1=1,l1 6=lr
l1
k ∧

Vh

k1=1,k1 6=k
¬(r1

k1
∧ · · · ∧ r

dk1
k1

).
For an expression with only one term, the
constraint for rl

1 is r1
1 ∧ · · · ∧ ¬rl

1 ∧ · · · ∧ r
d1
1 if

d1 > 1, and ¬r1
1 otherwise.

Lemma 2: Suppose
Wh

k1=1(r
1
k1

∧ · · · ∧ r
dk1
k1

) is an irreducible
DNF expression that is not equivalent to true and not
equivalent to false. At least one solution can be found for the

constraint (r1
k∧· · ·∧¬rl

k∧· · ·∧r
dk

k)∧
Vh

k1=1,k1 6=k
¬(r1

k1
∧ · · · ∧ r

dk1
k1

),
where k = 1, 2, . . . , h and l = 1, 2, . . . , dk.

According to Lemma 2, the constraints are not equivalent
to false in step 5. The resulting list of test case constraints
is the concatenation of the two lists obtained from steps 4
and 5:

D

^sk
i,j

l1=1
ck,l1
i,j ∧

^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k)

⊕
D

(¬ck,l
i,j ∧

^sk
i,j

l1=1,l1 6=l
ck,l1
i,j) ∧

^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k) ∧ l=1,2,...,sk
i,j

,

where ⊕ denotes list concatenation.
The list of test case constraints derived from this formula

for Table 3 is

〈 y > 1 ∧ x < 1 ∧ ¬(y > 1 ∧ x > 31),

¬(y > 1 ∧ x < 1) ∧ y > 1 ∧ x > 31,

y > 1 ∧ x ≥ 1 ∧ x ≤ 31,

y ≤ 1 ∧ x < 1 ∧ ¬(y ≤ 1 ∧ x > 31),

¬(y ≤ 1 ∧ x < 1) ∧ y ≤ 1 ∧ x > 31,

y ≤ 1 ∧ x ≥ 1 ∧ x ≤ 31 〉
⊕ 〈 ¬(y > 1) ∧ x < 1 ∧ ¬(y > 1 ∧ x > 31),

y > 1 ∧ ¬(x < 1) ∧ ¬(y > 1 ∧ x > 31),

¬(y > 1 ∧ x < 1) ∧ ¬(y > 1) ∧ x > 31,

¬(y > 1 ∧ x < 1) ∧ y > 1 ∧ ¬(x > 31),

¬(y > 1) ∧ x ≥ 1 ∧ x ≤ 31,

y > 1 ∧ ¬(x ≥ 1) ∧ x ≤ 31,

y > 1 ∧ x ≥ 1 ∧ ¬(x ≤ 31),

¬(y ≤ 1) ∧ x < 1 ∧ ¬(y ≤ 1 ∧ x > 31),

y ≤ 1 ∧ ¬(x < 1) ∧ ¬(y ≤ 1 ∧ x > 31),

¬(y ≤ 1 ∧ x < 1) ∧ ¬(y ≤ 1) ∧ x > 31,

¬(y ≤ 1 ∧ x < 1) ∧ y ≤ 1 ∧ ¬(x > 31),

¬(y ≤ 1) ∧ x ≥ 1 ∧ x ≤ 31,

y ≤ 1 ∧ ¬(x ≥ 1) ∧ x ≤ 31,

y ≤ 1 ∧ x ≥ 1 ∧ ¬(x ≤ 31) 〉.

3.6 Fault-Based Testing

Fault-based testing is typically used to demonstrate that
certain faults are not present in the software. In recent years,
a lot of research has been put into applying this strategy
to specification-based testing. Kuhn [25] gave a hierarchy
of fault classes, and then Lau and Yu [27] and Okun et
al. [31] extended the diagram by adding more fault classes.
However, since the research by Okun et al. is not based on
Boolean expressions, we do not discuss the faults in [31]
in this paper. The following are the fault classes appraised
in [27]:

• Expression Negation Fault (ENF): The entire expression
or a subexpression of it is implemented as its negation.

• Term Negation Fault (TNF): A term is implemented as
its negation.

• Operator Reference Fault (ORF): The logical operator
“∧” is implemented as “∨” (ORF[.]), or “∨” is imple-
mented as “∧” (ORF[+]).

7

• Literal Negation Fault (LNF): A Boolean literal is im-
plemented as its negation.

• Term Omission Fault (TOF): A term is omitted in its
implementation.

• Literal Reference Fault (LRF): A Boolean literal is re-
placed by another Boolean literal.

• Literal Omission Fault (LOF): A Boolean literal is omit-
ted from a term.

• Literal Insertion Fault (LIF): A Boolean literal is in-
serted into a term in which the literal or its negation
is not present.

Fig. 1. Hierarchy of fault classes (from [27])

Fig. 1 shows the hierarchy diagram from Lau and Yu [27],
given in terms of detection conditions, that is, the condi-
tions for a test case to reveal the faults in a class. An arrow
from fault class A to fault class B means that test cases that
detect A can also detect B. LOF and LIF are at the bottom
levels of the hierarchy. In other words, testing strategies
based on them are more effective than those based on the
other fault classes. Hence, fault-based testing in this paper
takes two fault classes into account, namely LOF and LIF.
The resulting lists of test case constraints for an m×n normal
table without duplicated evaluation expressions are

D

¬ck,l
i,j ∧

^sk
i,j

l1=1,l1 6=l
ck,l1
i,j ∧

^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k) ∧ sk
i,j

>1 ∧ l=1,2,...,sk
i,j

⊕
D

ck,1
i,j ∧

^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k) ∧ sk
i,j

=1

for LOF and

D

^sk
i,j

l1=1
ck,l1
i,j ∧ ¬c ∧

^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k) ∧ c∈(Li,j−Lk
i,j

)

for LIF, where Li,j is the list of all Boolean literals in Ei,j and
Lk

i,j =
˙

c
¸

c∈Li,j ∧ (c∧c
k,d
i,j

=false ∀d=1,2,...,sk
i,j

)
⊕

˙

c
k,d
i,j

¸

d=1,2,...,sk
i,j

. Ac-

cording to Boolean specification-based testing, a Boolean
literal whose negation is in a term cannot be inserted into
that term. Here, the list of Boolean literals that cannot be
inserted is extended to include those that cannot be true
simultaneously with any literal in the term. Consider the
expression x > 30 ∧ y < 12 ∨ x < 5 ∧ y < 20. The predicate
x > 30 cannot be inserted into the term x < 5 ∧ y < 20

because x > 30 and x < 5 cannot be true simultaneously. If

the Boolean variables p1, p2, p3, and p4 represent x > 30,
y < 12, x < 5, and y < 20, respectively, the expression
is p1 ∧ p2 ∨ p3 ∧ p4. It is possible to add p1 to the second
term because neither p1 nor p1 occurs in the second term.
If Li,j −Lk

i,j = ∅, the corresponding constraints do not exist.
Hence, the list for LIF can be empty. If a term contains only
one Boolean literal (that is, sk

i,j = 1), LOF for this literal is
then taken as TOF.

The list of test case constraints derived from this formula
for Table 3 is

〈 ¬(y > 1) ∧ x < 1 ∧ ¬(y > 1 ∧ x > 31),

y > 1 ∧ ¬(x < 1) ∧ ¬(y > 1 ∧ x > 31),

¬(y > 1 ∧ x < 1) ∧ ¬(y > 1) ∧ x > 31,

¬(y > 1 ∧ x < 1) ∧ y > 1 ∧ ¬(x > 31),

¬(y > 1) ∧ x ≥ 1 ∧ x ≤ 31,

y > 1 ∧ ¬(x ≥ 1) ∧ x ≤ 31,

y > 1 ∧ x ≥ 1 ∧ ¬(x ≤ 31),

¬(y ≤ 1) ∧ x < 1 ∧ ¬(y ≤ 1 ∧ x > 31),

y ≤ 1 ∧ ¬(x < 1) ∧ ¬(y ≤ 1 ∧ x > 31),

¬(y ≤ 1 ∧ x < 1) ∧ ¬(y ≤ 1) ∧ x > 31,

¬(y ≤ 1 ∧ x < 1) ∧ y ≤ 1 ∧ ¬(x > 31),

¬(y ≤ 1) ∧ x ≥ 1 ∧ x ≤ 31,

y ≤ 1 ∧ ¬(x ≥ 1) ∧ x ≤ 31,

y ≤ 1 ∧ x ≥ 1 ∧ ¬(x ≤ 31) 〉.

The list for LIF is empty.

4 COMPARISON OF STRATEGIES

This section compares the subsumption relationships of the
strategies on a mathematical basis. The comparison is based
on the assumption that only one test case is generated from
each test case constraint.

4.1 Notation

The following notation is used in this paper:

1. S : A testing strategy.
2. SP : The partition strategy for tabular expressions.
3. SD : Decision table-based testing.
4. SB : The basic meaningful impact strategy.
5. SF : Fault-based testing.
6. SP : The class of all specifications in a two-dimensional

normal table.
7. SPEC : Any subset of SP.
8. NDSP : The subset of SP containing all the specifications

with no duplicated evaluation expressions.
9. DSP : The subset of SP containing all the specifications

with duplicated evaluation expressions.
10. sp : A specification.
11. STCC(S, SPEC) : The lists of test case constraints derived

from strategy S over a class of specifications SPEC.
12. stcc(S, sp) : The list of test case constraints derived from

strategy S for a specification sp.
13. T (S, sp) : A test suite for specification sp derived from

strategy S.
14. WT(S, sp) : The set of all T (S, sp).

8

Clearly, SP = NDSP ∪ DSP and NDSP ∩ DSP = ∅. The list
stcc(S, sp) can be taken as an instance of STCC(S, SPEC) for
some sp ∈ SPEC. Since SPEC is a class of specifications, the
test case constraints in STCC(S, SPEC) are abstract and inde-
pendent of any specification, while stcc(S, sp) is a list of real
test case constraints. It is unknown whether a constraint in
STCC(S, SPEC) exists or is equivalent to false. If a constraint
in STCC(S, SPEC) is equivalent to false for specification sp, it
is removed from stcc(S, sp). Given a specification sp, there
can be numerous test suites that satisfy a testing criterion.

4.2 Definitions

The following definitions are given for the purpose of the
comparison:

1. Equivalence

a. A constraint c1 is equivalent to another constraint
c2, denoted by c1 = c2, if each solution to c1 is a
solution to c2 and vice versa.

b. A list of constraints C1 is equivalent to another list
C2, denoted by C1 = C2, if each constraint in C1 has
an equivalent constraint in C2 and vice versa.

c. S1 is equivalent to S2 over a specification sp, denoted
by S1(sp) = S2(sp), if stcc(S1, sp) is equivalent to
stcc(S2, sp), that is, stcc(S1, sp) = stcc(S2, sp).

d. S1 is equivalent to S2 over a class of specifications
SPEC, denoted by S1(SPEC) = S2(SPEC), if S1(sp) =

S2(sp) for all sp ∈ SPEC.

2. Subsumption
Testing strategy S1 subsumes testing strategy S2 over a
specification sp, denoted by S1(sp) ≻ S2(sp), if for any
T (S1, sp), T (S1, sp) ∈ WT(S2, sp).

3. Unconditional subsumption
Testing strategy S1 unconditionally subsumes testing
strategy S2 over a class of specifications SPEC, denoted
by S1(SPEC) ⊲⊲ S2(SPEC), if the following conditions
are satisfied:

CUS1. For any specification sp ∈ SPEC, S1(sp) ≻

S2(sp).
CUS2. For any specification sp ∈ SPEC, if stcc(S1, sp)

= ∅, stcc(S2, sp) = ∅.

The unconditional subsumption relationship is transi-
tive. If S1 unconditionally subsumes S2 and S2 uncon-
ditionally subsumes S3 over a class of specifications
SPEC, S1 unconditionally subsumes S3 since for all
sp ∈ SPEC, S1(sp) ≻ S2(sp) ≻ S3(sp). If stcc(S1, sp) = ∅

and stcc(S2, sp) = ∅, then stcc(S3, sp) = ∅. Consider the
following example. Let p1, p2, p3, and p4 be Boolean
literals. Suppose STCC(S1, SPEC) = 〈p1 ∧ p2, p1 ∧ p3〉 and
STCC(S2, SPEC) = 〈p1∧p2〉. Then, stcc(S1, sp) ⊇ stcc(S2, sp)

for any sp ∈ SPEC. Both CUS1 and CUS2 are satisfied.
Hence, S1(SPEC) ⊲⊲ S2(SPEC).

4. Conditional subsumption
A test strategy S1 conditionally subsumes another testing
strategy S2 over a class of specifications SPEC, denoted
by S1(SPEC) ⊲ S2(SPEC), if the following conditions are
satisfied:

CCS. For any specification sp ∈ SPEC, S1(sp) ≻

S2(sp) and S1(sp) 6= S2(sp) provided that some sub-
lists of STCC(S1, SPEC) exist or some sublists of
STCC(S2, SPEC) do not exist with respect to sp.

Suppose STCC(S1, SPEC) = 〈p1 ∧ p2 ∧ p4, p1 ∧ p3〉 and
STCC(S2, SPEC) = 〈p1 ∧ p2〉. Then, S1(SPEC) ⊲ S2(SPEC).
For any specification sp ∈ SP, S1(sp) ≻ S2(sp) provided
that 〈p1∧p2∧p4〉 exists with respect to sp. There are two
situations where a sub-suite of STCC(S1, SPEC) does not
exist for sp ∈ SPEC:

a. Some of the predicates (such as p4) do not exist for
sp.

b. The actual constraint of p1 ∧ p2 ∧ p4 with respect to
sp is equivalent to false. For instance, if p1 is x > 31,
p2 is y < 10, and p4 is x < 28, the constraint x >

31 ∧ y < 10 ∧ x < 28 is always false.

The subsumption relationships above are defined ac-
cording to the concept of abstract test case constraints.
As shown in the example, some testing strategies sub-
sume others according to certain prerequisites.

5. Incomparability

a. Two testing strategies S1 and S2 are incomparable
over a specification sp, denoted by S1(sp) ∼ S2(sp),
if S1 does not subsume S2 nor vice versa.

b. Two testing strategies S1 and S2 are incomparable
over a class of specifications SPEC, denoted by
S1(SPEC) ∼ S2(SPEC), if S1 does not conditionally
or unconditionally subsume S2, nor vice versa.

4.3 Comparison of the Testing Strategies

The comparison in this section assumes that there are no
duplicated evaluation expressions in a table. The proofs
of the theorems are given in Appendix D. Section 4.4
discusses tabular specifications with duplicated evaluation
expressions.

Theorem 1: Decision table-based testing unconditionally
subsumes the partition strategy for tabular expressions over
NDSP, that is, SD(NDSP) ⊲⊲ SP (NDSP).

It follows that SD subsumes SP over any sp in NDSP. If
wi,j = 1 for i = 1, 2, . . . , m and j = 1, 2, . . . , n, stcc(SD, sp) =

stcc(SP , sp), that is, SD and SP are equivalent to each other
over sp.

Theorem 2: The basic meaningful impact strategy uncon-
ditionally subsumes decision table-based testing over NDSP,
that is, SB(NDSP) ⊲⊲ SD(NDSP).

Following this theorem, for any sp in NDSP, SB(sp) ≻

SD(sp). Since decision table-based testing unconditionally
subsumes the partition strategy for tabular expressions,
the basic meaningful impact strategy unconditionally sub-
sumes the partition strategy also.

According to Lemma 2, the second list in STCC(SB , NDSP)

is never empty with respect to any sp ∈ NDSP. It
does not mean, however, that decision table-based
testing is never equivalent to the basic meaningful
impact strategy for a specification in NDSP. Although
STCC(SB , NDSP) ⊃ STCC(SD, NDSP), it is possible that
stcc(SB , sp) = stcc(SD, sp). In STCC(SB , NDSP), data satisfying

9

¬c
k,l
i,j ∧

Vsk
i,j

l1=1,l1 6=lc
k,l1
i,j ∧

Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j)

evaluate the expression T [1][i]∧T [2][j] to false. According to
the definition of tabular expressions, there must exist i′, j′

(i 6= i′ or j 6= j′) such that the data evaluate T [1][i′] ∧ T [2][j′]

to true. For example, SB and SD are equivalent over the
specification in Table 7, where T [1][1] ∧ T [2][1] = a > 3 ∧ b > 5,
T [1][1] ∧ T [2][2] = a > 3 ∧ b ≤ 5, T [1][2] ∧ T [2][1] = a ≤ 3 ∧ b > 5,
and T [2][1] ∧ T [2][2] = a ≤ 3 ∧ b ≤ 5.

The lists of test case constraints are 〈 a > 3 ∧ b > 5,
a > 3 ∧ b ≤ 5, a ≤ 3 ∧ b > 5, a ≤ 3 ∧ b ≤ 5 〉 for SD and
〈a > 3 ∧ b > 5, a > 3 ∧ b ≤ 5, a ≤ 3 ∧ b > 5, a ≤ 3 ∧ b ≤ 5

〉 ⊕ 〈¬(a > 3) ∧ b > 5, a > 3 ∧ ¬(b > 5), ¬(a > 3) ∧ b ≤ 5,
a > 3 ∧ ¬(b ≤ 5), ¬(a ≤ 3) ∧ b > 5, a ≤ 3 ∧ ¬(b > 5),
¬(a ≤ 3) ∧ b ≤ 5, a ≤ 3 ∧ ¬(b ≤ 5) 〉 for SB . Since a > 3

= ¬(a ≤ 3) and b > 5 = ¬(b ≤ 5), the second list for SB is
equivalent to the first list. The strategies SB and SD are,
therefore, equivalent over this specification.

TABLE 7

Example where SB(sp) = SD(sp)

T [2]
b > 5 b ≤ 5

a > 3 a + b a − b
a ≤ 3 a/b a × b
T [1] T [0]

Theorem 3: 1) Fault-based testing for the LOF and LIF
classes of faults conditionally subsumes the basic mean-
ingful impact strategy over NDSP, that is, SF (NDSP) ⊲

SB(NDSP). 2) The basic meaningful impact strategy condi-
tionally subsumes fault-based testing for the LOF and LIF
classes of faults, that is, SB(NDSP) ⊲ SF (NDSP).

For any specification sp ∈ SPEC, SF subsumes SB over sp

only if there exists at least one LIF fault for every term in
each evaluation condition; SB subsumes SF over sp only if
there is no LIF fault for all the terms in all the evaluation
conditions.

If two testing strategies S1 and S2 are not equivalent and
S1 unconditionally subsumes S2, it is impossible that S2

unconditionally subsumes S1. However, if S1 conditionally
subsumes S2, it is possible that S2 conditionally subsumes
S1.

Theorem 4: Fault-based testing for the LOF and LIF
classes of faults conditionally subsumes decision table-
based testing over NDSP, that is, SF (NDSP) ⊲ SD(NDSP).

Nevertheless, decision table-based testing does not condi-
tionally subsume fault-based testing. Although stcc(SF , sp) =

stcc(SD, sp) for some sp ∈ NDSP when some subsets of
SF (NDSP) do not exist, CCS is not satisfied.

For any specification sp ∈ SPEC, SF subsumes SD over sp

only if there exists at least one LIF fault for every term in
each evaluation condition.

Theorem 5: Fault-based testing for the LOF and LIF
classes of faults conditionally subsumes the partition
strategy over NDSP, that is, SF (NDSP) ⊲ SP (NDSP).

For any specification sp ∈ SPEC, SF subsumes SP over sp

only if at least one term has a LIF fault in each evaluation
condition.

4.4 Duplication of Evaluation Expressions

Theorems 2, 3, and 4 are still true despite the presence
of duplicated evaluation expressions in a table. This is
due to the fact that decision table-based testing, the basic
meaningful impact strategy, and fault-based testing are de-
rived from the same equivalent conventional mathematical
expressions. However, comparison results with the partition
strategy are no longer valid because the number of test case
constraints required for the partition strategy can be larger
than that for any of the other three strategies. Furthermore,
the partition strategy may subsume any of the other three
test strategies over some specifications. Table 8 is an exam-
ple where the partition strategy subsumes the other three
strategies.

TABLE 8

An example where SP is the strongest

T [2]
b > 5 b = 5 b < 5

a > 3 a + b a + b a + b
a = 3 a × b a × b a × b
a < 3 a − b a − b a − b
T [1] T [0]

The equivalent conventional mathematical expression
with combined evaluation conditions is

f(a, b) =

8

<

:

a + b if a > 3
a × b if a = 3
a − b if a < 3.

Since the three columns in the main grid are identical, it
is equivalent to the specification in Table 9. However, a
software engineer may use the form in Table 8 because of
specific reasons such as compatibility with other tables in
the same system.

TABLE 9

Another presentation of Table 8

a > 3 a + b
a = 3 a × b
a < 3 a − b
T [1] T [0]

Table 10 shows the respective lists of test case constraints
for the four strategies.

TABLE 10

Test case constraints

SP 〈a > 3 ∧ b > 5, a > 3 ∧ b = 5, a > 3 ∧ b < 5, a =
3 ∧ b > 5, a = 3 ∧ b = 5, a = 3 ∧ b < 5, a <
3 ∧ b > 5, a < 3 ∧ b = 5, a < 3 ∧ b < 5〉

SD 〈a > 3, a = 3, a < 3〉
SB 〈a > 3, a = 3, a < 3, a ≤ 3, a 6= 3, a ≥ 3〉
SF 〈a > 3, a = 3, a < 3〉

5 EXPERIMENTAL STUDY

As we have demonstrated in the previous section, the
subsumption relationship may depend on the features of

10

the real specifications. Therefore, we further compare these
testing strategies with respect to some real programs.

We use two applications in the experiment: NextDate and
Sales. The specifications are in Appendix A. The NextDate
application contains seven tables while the Sales application
contains four. Three table types are used in these specifica-
tions: normal (N), inverted (I), and tree-structured (T). The
expressions in the tables are not limited to nonduplicated
expressions.

In the experiment, the testing strategies are compared in
terms of their mutation scores. In theory, a mutation score
is defined as the number of killed mutants divided by
the number of all nonequivalent mutants with respect to
a test suite. Since the scores in the experiment are collected
only for the purpose of comparison, we do not separate
the nonequivalent mutants from the equivalent ones. Hence
the mutation scores are actually computed as the number
of killed mutants divided by the number of all mutants
with respect to a test suite. This does not affect the actual
comparison results since the same denominator applies to
all the strategies under study.

In the experiment, we use the mutation generator devel-
oped in our group [14] to automatically generate mutants of
the programs. Table 11 lists the 20 mutation operators (syn-
tactic changes to a program) implemented in the mutant
generator. These mutation operators are extracted from [1],
and mainly concern syntactic changes in statements, ex-
pressions, and brackets. The coupling effect [12] indicates
that software engineers, in their multiple iterations during
the design process, constantly narrow down the difference
between what their programs currently look like and what
they are intended to look like. It is typically more difficult
to uncover faults in programs that are near completion as
opposed to programs that are in earlier stages of develop-
ment. Hence, in this experiment, every mutant is obtained
by applying a single mutant operator per application.

In addition to the mutant generator, we also use a con-
straint solver, a test driver, and a data analyzer [14] in
the experiment. The constraint solver BoNus is third-party
software. It generates test cases from arithmetic constraints.
The test driver reads the test cases, runs the original pro-
gram and its mutants, and then compares the results. The
data analyzer calculates the mutation scores and lists all
the mutants that have passed the test data (either because
these mutants are equivalent to the original programs, or
because the test data fail to kill the mutants).

For every specification table, two test suites are derived
from each testing strategy. In both suites, one test case is
generated from each test case constraint. In the first suite,
duplicated test cases are removed. In the second suite,
duplicated test cases are not removed; instead, if a test case
includes a value used in another test case, the value will
be replaced with a different one if available. For example,
〈month > 12 ∧ ¬(month < 1),¬(month > 12) ∧ ¬(month <

1),¬(month > 12) ∧ (month < 1),¬(month > 12) ∧ ¬(month < 1)〉

is a list of test case constraints for the mError specification.
The second and the fourth constraints in the list are the
same. If one test case is chosen for each constraint in this

TABLE 11

Mutation operators

Name Definition

OCOR Cast operator replacement or type replacement

SMVB Move a brace up or down

SSOM Exchange the sequence of the statements in the same level

SSDL Delete a simple statement

SCBR Replace “break” by “continue” or replace “continue” by
“break”

SCBM Remove “continue” or “break” to the outer or inner level

SICC Insert semicolon after “if”, “while”, or “for”

SSCB Delete or add the “break” in “switch” statement

EARA Replace an arithmetic assignment operator “+ =”,
“− =”, “=”, “& =”, “<<=”, “| =”, “∗ =” by another
legal assignment operator

EORO Replace a binary operator by another legal operator

EVRV Replace a variable by another variable of the same type

ERRV Replace a reference by a variable of the same type

EVRC Replace a variable or a constant by a positive value, a
negative value, and 0. If it is a string constant, replace it
by a constant string and an empty string

EURU Replace a unary operator by another unary operator

EADV Add or delete a variable

EADP Add or delete a pair of parenthesis in an arithmetic
expression

EADU Add or remove a unary operator

EACE Add a positive constant and a negative constant to the
end of an expression

ELCN Negate the whole logical expression

EEAI Exchange the index of an array with multiple dimensions

list, the test suite is 〈month = 13, month = 1, month = 0, month =

1〉. To create the first test suite, one of the entries “month = 1”
is removed because it is duplicated. The resulting test suite
is 〈month = 13, month = 1, month = 0〉. In constructing the
second test suite, one “month = 1” is replaced by “month = 2”
because the latter is another test case that satisfies the
same test case constraint. Thus, the second test suite is
〈month = 13, month = 1, month = 0, month = 2〉.

Tables 12 and 13 present the mutation scores obtained
from the experiment. Grid T [2] lists the program names,
number of mutants, and the table type for each program;
Grid T [1] contains the strategy names; T [0] gives the muta-
tion scores along with the numbers of test cases in brackets.

We have the following observations from the experimen-
tal results:

1. For each testing strategy, there is no clear relationship
between the number of test cases and the subsequent
test effectiveness.

We first compare Tables 12 and 13. One could expect
the mutation scores in the second test suite to be
higher. However, some mutation scores in Table 13
are lower than their counterparts in Table 12. For
instance, the number of test cases for dError derived
from SB in the second test suite is almost twice that
in the first test suite, but the mutation score is lower.
We first use the simpler nDate example to explain
the situation. The mutation score for nDate with SP

in Table 13 is 0.646. This is lower than the score of
0.722 in Table 12. The test suite for the mutation score
0.722 is T1 = 〈〈year = 2081, month = 1, day = 1〉, 〈year =

11

TABLE 12

Mutation scores: minimum sets

T [2]
dError mError mType nDate tDate yError yType Bonus Comm Level Price
(316, I) (52, N) (160, T) (168, N) (464, I) (52, N) (111, N) (145, N) (333, I) (269, N) (222, N)

SP 0.509 0.692 0.900 0.722 0.746 0.712 0.468 0.830 0.649 0.713 0.853
(6) (2) (5) (2) (6) (2) (2) (6) (6) (6) (9)

SD 0.718 0.827 0.900 0.741 0.746 0.769 0.847 0.830 0.703 0.713 0.853
(11) (3) (5) (4) (8) (3) (4) (6) (6) (6) (9)

SB 0.785 0.827 0.900 0.741 0.756 0.769 0.847 0.830 0.763 0.713 0.853
(18) (3) (5) (4) (13) (3) (4) (6) (7) (8) (9)

SF 0.772 0.596 0.900 0.741 0.750 0.519 0.847 0.830 0.763 0.713 0.853
(17) (2) (5) (4) (12) (2) (4) (6) (8) (6) (9)

T [1] T [0]

TABLE 13

Mutation scores

T [2]
dError mError mType nDate tDate yError yType Bonus Comm Level Price
(316, I) (52, N) (160, T) (168, N) (464, I) (52, N) (111, N) (145, N) (333, I) (269, N) (222, N)

SP 0.563 0.692 0.900 0.646 0.746 0.712 0.468 0.803 0.796 0.737 0.858
(6) (2) (5) (2) (6) (2) (2) (6) (6) (6) (9)

SD 0.706 0.827 0.900 0.729 0.746 0.769 0.847 0.803 0.796 0.737 0.858
(11) (3) (5) (4) (8) (3) (4) (6) (6) (6) (9)

SB 0.753 0.846 0.906 0.747 0.765 0.788 0.847 0.844 0.826 0.749 0.862
(39) (7) (12) (11) (25) (7) (10) (18) (18) (17) (31)

SF 0.753 0.615 0.906 0.741 0.761 0.519 0.847 0.844 0.826 0.749 0.862
(33) (4) (9) (9) (19) (4) (6) (12) (15) (15) (21)

T [1] T [0]

1812, month = 1, day = 1〉〉, while the test suite for the
mutation score 0.646 is T2 = 〈〈year = 2081, month =

1, day = 1〉, 〈year = 1812, month = 2, day = 2〉〉. The
second test case in T2 is different from the second test
case in T1. In T2, day and month could both be assigned
the value of 1 but were given the value of 2 so that
the values of day and month would not be repeated.
The consequence is that assigning different values
may create less effective test cases. When compared
with 〈year = 1812, month = 1, day = 1〉, the test case
〈year = 1812, month = 2, day = 2〉 is less powerful
in revealing faults in the nDate program. Thus, even
though there is no difference in the numbers of test
cases between the two test suites, the above discussion
helps explain why the second test suite produces a
lower mutation score in the dError program.

2. SB is the strongest among the four strategies under
study.

As proven in Section 4.3, SB unconditionally sub-
sumes SP and SD, and hence it is not surprising that
the mutation scores for this strategy are higher than
the scores for SP and SD. We have shown that SB and
SF conditionally subsume each other; nevertheless, SB

always has higher mutation scores in the experiment.
In any case, it must also be noted that, although SB is
the most effective among the strategies, the number
of test cases is also the highest. When selecting a
test strategy, a trade-off has to be made between
effectiveness and cost if the testing resource is limited.

3. SP can be more effective than SF in certain circum-
stances.

SF has higher mutation scores for most programs,
but there are two exceptions: mError and yError. This

result is not contradictory to the proof because SF

does not unconditionally subsume SP . Both the mError

and yError programs have no test case constraints
for LIF faults derived from SF and the test cases
generated for LOF are less powerful than the test cases
generated for SP in these two programs.

4. The mutation scores depend on constraint solvers.
Our intuitive understanding was that the mutation

scores for the mError and yError programs should be
the same since they have similar specifications and
implementations. The results are surprising in that
they have different mutation scores. Further study
reveals that the constraint solving algorithm causes
the different scores. BoNus [14] is the constraint solver
used in the toolset developed in our group. The
test suites derived from SD for yError and mError are
〈2081, 0, 1812〉 and 〈13, 0, 1〉, respectively. The values
2081 and 1812 for yError correspond to the values 13

and 1, respectively. The value 0 in the test suite for
yError is derived from the constraint “year < 1812”,
while the same value in the test suite for mError is
from the constraint “month < 1”. In other words,
the BoNus algorithm gives 0 for both “year < 1812”
and “month < 1”. For a program expression such as
“month < 1 || month > 12” (written in C), the test case 0

is very effective in detecting common faults, while for
an expression like “year < 1812 || year > 2080”, the test
case 0 is less effective. When the test case is changed
from 0 to 1811 for “year < 1812”, the mutation score
increases.

5. The mutation scores depend on the mutants.
Mutation scores always depend on the mutants

for a single program. However, when two programs

12

are compared, the generated mutants can also affect
the comparison results. Consider the mError and the
yError examples again. Using the SP strategy, the test
suites are 〈13, 1〉 for mError and 〈2081, 1812〉 for yError.
Intuitively, there should not be any difference between
the mutation scores using these two test suites since
they involve similar programs and similar test cases.
However, the mutation score for yError is higher than
that for mError. This is caused by the generation of
the mutants. The EVRC mutation operator requires
that a constant in the source code be changed to
a positive constant, a negative constant, and 0. The
mutation generator uses the number 3 as the pos-
itive constant to replace a constant in the source
code 1. Hence, there is a mutant for mError, where
the expression month > 12 || month < 1 is changed to
month > 3 || month < 1; similarly, there is a mutant for
yError, where the expression year > 2080 || year < 1812

is changed to year > 3 || year < 1812. Then, both
test cases for mError cannot distinguish this mutant
from the original program while the test case 1812

for yError can distinguish year > 3 || year < 1812 from
year > 2080 || month < 1812.

6. Many terms in the expressions have no LIF faults.
It is noted that the number of test cases for SF is

less than the number of test cases for SB in some
programs. For some specifications, no LIF faults exist
for any term in an expression. For some of the terms
having LIF faults, no test cases can distinguish the ex-
pression with LIF faults from the original one because
these two expressions are equivalent.

With regard to the above observations, test effectiveness
depends on many factors: testing strategies, specifications,
faults, constraint solvers, and so on. For the same testing
strategy, if we apply it to a different specification, or to
the same specification with a different implementation, or
if we use a different method to generate test cases from
the test case constraints, we may obtain different results.
For instance, SB unconditionally subsumes SP and SD.
These relationships are reflected in the experimental results
as expected. On the other hand, SB and SF conditionally
subsume each other, but SF did not show a higher mutation
score in any program throughout the experiment. Although
this result does not contradict the proofs, further discussion
is required.

If SF has higher mutation scores than SB , testers should
select SF . Since this is not the case, let us examine the
situation further. In this paper, SF covers two fault classes,
namely LOF and LIF. LOF is one of the fault classes that
can also be detected by SB . Hence, LOF faults should not
cause SF to be less effective. Suppose we conduct a test
for detecting LIF faults only. Let us concentrate on two
major factors — specifications and faults — and ignore the
less important factor of constraint solvers. Two possibilities
should be taken into account in terms of these two factors:
1) the possibility for LIF faults to exist in a specification

1. If the constant happens to be 3, the generator uses the number 17 to
replace this constant.

with available test cases, and 2) the possibility for a faulty
program to exist to reflect the faulty specification with LIF
faults. The experimental results show that both possibilities
are low in terms of fault-based testing for LIF, and hence
it is clearly better to select SB . The same analysis can be
done for the LRF class of faults, which is also in the fault
class hierarchy diagram. According to the definitions of LIF
and LRF in [27], if a Boolean literal cannot be inserted into
a term (LIF), it cannot be used to replace any literal in
that term (LRF). It is possible, however, that both LIF and
LRF faults exist but there are no test cases available for LIF
faults. This situation exists in some programs used in the
experiment. The test cases for LRF either do not exist or
are duplicated with other test cases in the same test suite.
As a result, the scores for SF in the experiment cannot be
improved by considering LRF faults.

An open area of discussion in this comparison is the
choice between MUMCUT [8] and the basic meaningful
impact strategy. The MUMCUT strategy can cover all fault
types in the hierarchy diagram of fault classes, and yet
requires significantly more test cases than the basic mean-
ingful impact strategy [24]. The detection of the LIF and
LRF fault classes is where the MUMCUT strategy has a clear
advantage over the basic meaningful impact strategy [8]. If
we use both SB and SF , they cover the entire hierarchy
diagram with the only exception of LRF. We combine the
test cases for SB and SF to test the programs in the experi-
ment, but find the mutation scores to be the same as those
for the basic meaningful impact strategy. Even though we
do not include the MUMCUT strategy in the comparison,
the effectiveness of this strategy can be approximated by
the effectiveness of SB and SF and the previous analysis of
LIF and LRF faults. This holds true until it is shown that
MUMCUT detects other fault types that cannot be ignored.
The consideration of LIF and LRF faults does not improve
the test effectiveness in the experiment. In any case, it is
an open research question to uncover how the number of
infeasible LIF and LRF faults or the consideration of LIF
and LRF faults can affect mutation scores. It is also unclear
whether the MUMCUT strategy can detect other important
fault types not included in the hierarchy diagram of fault
classes to justify the cost of generating significantly more
test cases. These are issues that need further research and
empirical study.

6 CONCLUSION

Four testing strategies have been compared on a mathemat-
ical basis through a precisely defined subsumption relation-
ship. For a two-dimensional normal table without dupli-
cated evaluation expressions, decision table-based testing
unconditionally subsumes the partition strategy. The ba-
sic meaningful impact strategy unconditionally subsumes
decision table-based testing and conditionally subsumes
fault-based testing. On the other hand, fault-based testing
conditionally subsumes all the other three strategies. For
two-dimensional normal tables, duplicated evaluation ex-
pressions have no effect on the subsumption relationship
among decision table-based testing, the basic meaningful

13

impact strategy, and fault-based testing. However, the sub-
sumption relationship with respect to the partition strategy
is affected. The partition strategy subsumes any of the other
three testing strategies for some specifications.

We have also compared these strategies using real pro-
grams where the table types are not limited to normal, and
the expressions can either be duplicated or nonduplicated.
The experiment shows that the basic meaningful impact
strategy is the strongest while the partition strategy is
the weakest in most cases. Although fault-based testing
conditionally subsumes the partition strategy, it can be
weaker than partition testing in certain circumstances. The
experimental study also shows that the constraint solving
algorithm can affect the effectiveness of a testing strategy.
The theoretical proofs and the experimental study together
provide testers with useful information on how to choose
testing strategies and generate test data from the test case
constraints. A summary of the comparison is shown in
Tables 14 and 15. Incidentally, the summary is presented
in the format of normal tables.

TABLE 14

Subsumption relationships (NDSP)

SP SD SB SF

SP = ⊳⊳ ⊳⊳ ⊳

SD
⊲⊲ = ⊳⊳ ⊳

SB
⊲⊲ ⊲⊲ = ⊲

SF
⊲ ⊲ ⊲ =

TABLE 15

Subsumption relationships (DSP)

SP SD SB SF

SP = ∼ ∼ ∼

SD
∼ = ⊳⊳ ⊳

SB
∼ ⊲⊲ = ⊲

SF
∼ ⊲ ⊲ =

The symbols in cell (S1, S2) indicate the subsumption rela-
tionship between S1 and S2. For example, the “⊲” symbol
in (S1, S2) means S1 ⊲ S2. We have also introduced two
more symbols: “⊳⊳” and “⊳”. The “⊳⊳” symbol in (S1, S2)
means S2 ⊲⊲ S1 while the “⊳” symbol in (S1, S2) means
S2 ⊲ S1. Hence, if the symbol in cell (S1, S2) is “⊲⊲”, the
symbol in cell (S2, S1) must be “⊳⊳”.

In this paper, only two-dimensional normal tables are
discussed. The comparison results for one-dimensional and
higher dimensional normal tables are exactly the same as
those for two-dimensional normal tables. For other table
types, we note that, under the concept of combined evalu-
ation conditions, the equivalent conventional mathematical
expressions do not depend on table types. Therefore, the
subsumption relationships among decision table-based test-
ing, the basic meaningful impact strategy, and fault-based
testing are not influenced, but the results related to the
partition strategy for tabular expressions are affected.

APPENDIX A
TABULAR SPECIFICATION EXAMPLES

A.1 Example 1: NextDate

NextDate (Fig. 2) is an example of a specification in tabular
expressions. The program computes the next date according
to the input current date. It performs the following func-
tions.

1. Check the validity of the input date. The input 〈year,
month, day〉 is not valid when any of the following is
satisfied:

a. year is outside the range of 1812 to 2080;
b. month is outside the range of 1 to 12;
c. day is outside the range of 1 to 31 when month is 1,

3, 5, 7, 8, 10, or 12;
d. day is outside the range of 1 to 30 when month is 4,

6, 9, or 11;
e. day is outside the range of 1 to 28 when month is 2

and year is not a leap year;
f. day is outside the range of 1 to 29 when month is 2

and year is a leap year.

2. Calculate the next date. If the current date is not valid,
set day = 0, month = 0, and year = 0; otherwise, the next
date is calculated according to the following rules:

a. If day is not the last date of month, add 1 to day.
b. If day is the last date of month, but month is not 12,

set day = 1 and add 1 to month.
c. If day is 31 and month is 12, set day = 1 and month = 1,

and add 1 to year.

In Fig. 2, DayError and TomorrowDate are in inverted ta-
bles, MonthType is in a tree-structured table where the last
row contains evaluation expressions, and all the others are
normal tables. The normal tables in this example are all in
one-dimension, that is, there are only two grids: T [1] and
T [0]. A function occurring in a cell can be a table itself. For
instance, the MonthType function in T [1] of the NextDate table
is defined by a table also.

A.2 Example 2: Sales

This program calculates the promotion levels for a sales-
person according to the number of health food products
the salesperson has sold. There are three kinds of products:
Vitamin A, Vitamin C, and Vitamin E. The respective prices
for Vitamins A, C, and E are 20 euros, 26 euros, and 32 euros
per bottle when the quantity is not more than 30 bottles; 18
euros, 24 euros, and 30 euros per bottle when the quantity
is above 30 bottles but not more than 60; and 16 euros, 22
euros, and 28 euros per bottle when the quantity is beyond
60 bottles.

A salesperson receives commission for the sold products.
If the salesperson is not in Europe, the commission is 10,
15, or 20 percent of the sales amount when the amount is
not more than 3,000 euros, above 3,000 euros but not more
than 4,800 euros, or beyond 4,800 euros, respectively; if the
salesperson is in Europe, the commission is 10, 15, or 20
percent of the sales amount when the amount is not more
than 2,800 euros, above 2,800 euros but not more than 4,500
euros, or beyond 4,500 euros, respectively.

14

nextDate NextDate(int day, int month, int year) !

YearError(year) ! MonthError(month) !

DayError(day, month)

¬(YearError(year) ! MonthError(month) !

DayError(day, month))

(0, 0, 0) TomorrowDate(day, month, year)

nextDate TomorrowDate(int day, int month, int year) !

 " ¬(YearError(year) ! MonthError(month) ! DayError(day, month))

 <1, month%12+1, (year + month /12)

% 2081>

<day + 1, month, year>

MonthType(month) = M_31 day = 31 day < 31

MonthType(month) = M_30 day = 30 day < 30

MonthType(month) = M_28_29 (day = 29) ! (day = 28

" YearType(year) = CommonYear)

(day = 28 " YearType(year) =

LeapYear) ! (day < 28)

Boolean DayError(int day, int month, int year) !

"¬(YearError(year) ! MonthError(month))

 true false

MonthType(month) = M_31 day < 1 ! day > 31 day # 1 " day $ 31

MonthType(month) = M_30 day < 1 ! day > 30 day # 1 " day $ 30

MonthType(month) =

M_28_29

 day < 1 ! (day > 29 " YearType(year)

= LeapYear) ! (day > 28 "

YearType(year) = CommonYear)

day # 1 " ((day $ 29 "

LearType(year) = LeapYear) !

(day $ 28 " YearType(year) =

CommonYear))

monthType MonthType(int month) !

"¬MonthError(month)

month < 8 month # 8

month % 2 = 0 month % 2 = 1

month = 2 month % 2

month % 2 = 1 month % 2 = 0

M_31 M_28_29 M_30 M_30 M_31

yearType YearType(int year) !

"¬YearError(year)

year % 4 % 0 ! (year % 100 = 0 " year % 400 % 0) year % 4 = 0 " (year % 100 % 0 ! year % 400 = 0)

CommonYear LeapYear

Boolean MonthError(int month) !

month > 12 ! month < 1 month # 1 " month $ 12

true false

Boolean YearError(int year) =

year > 2080 ! year < 1812 year ! 1812 " year # 2080

true false

Fig. 2. Specification of NextDate in tabular expressions

The salesperson’s bonus is then calculated to decide
his/her promotion level. There is no bonus if the commis-
sion is below 1,000 euros. If the commission is not less
than 1,000 euros but below 1,500 euros, the number of
bonus points will be 1.5 percent of the commission (for
instance, 1,000 euros in commission translates to 15 points)
for a salesperson in Europe and 30 points for a salesperson
outside Europe. If the commission is not less than 1,500
euros, the number of bonus points will be 2 percent of the
commission for a salesperson in Europe and 50 points for a
salesperson outside Europe. If the bonus reaches 50 points,
a salesperson can be promoted by two levels in Europe and
one level outside Europe. If the bonus reaches 30 points but
is below 50, a salesperson can be promoted by one level in
Europe.

In Fig. 3, the specification consists of four tables: Price,
Bonus, and Level, and Commission. Commission is an inverted
table while the others are normal tables.

PromotionLevel (int qa, int qc, int qe, Region r) =

 T[2]

 Bonus(Commission(qa,

qc, qe, r), r) < 30
30 ! Bonus(Commission(qa,

qc, qe, r), r) < 50

Bonus(Commission(qa,

qc, qe, r), r) " 50

r! EUROPE 0 0 1

r=EUROPE 0 1 2

T[1] T[0]

Bonus(int c, Region r) =

 T[2]

 c < 1000 1000 ! c < 1500 c " 1500

r! EUROPE 0 c * 0.015 c * 0.02

r =EUROPE 0 30 50

T[1] T[0]

Sales(int qa, int qc, int qe) = Price(qa, VA) * qa + Price(qc, VC) * qc + Price(qe, VE) * qe

Commision(int qa, int qc, int qe, Region r) =

 T[2]

 Sales(qa, qc, qe) * 0.1 Sales(qa, qc, qe) * 0.15 Sales(qa, qc, qe) * 0.2

r!EUROPE Sales(qa, qc, qe) ! 3000 3000 < Sales(qa, qc, qe) !4800 Sales(qa, qc, qe) > 4800

r=EUROPE Sales(qa, qc, qe) ! 2800 2800 < Sales(qa, qc, qe) ! 4500 Sales(qa, qc, qe) > 4500

T[1] T[0]

Price(int q, vType t) =

 T[2]

 t =VA t =VC t =VE

q ! 30 20 26 32

30 < q ! 60 18 24 30

q > 60 16 22 28

T[1] T[0]

Fig. 3. Specification of Sales in tabular expressions

APPENDIX B
TABLE TRANSFORMATION EXAMPLES

Tables 16 and 17 show, respectively, a normal table and a
tree-structured table transformed from the inverted table in
Table 1. To save space, d, m, y, C and L are used to represent
day, month, year, Common, and Leap, respectively.

APPENDIX C
APPLICATION OF DECISION TABLE-BASED TEST-
ING TO THE DayError EXAMPLE

For the DayError example, the DNF of the combined evalu-
ation condition that corresponds to true is

(mType(m) = M 31 ∧ d < 1) ∨ (mType(m) = M 31 ∧ d > 31) ∨ (mType(m) = M 30 ∧ d <

1) ∨ (mType(m) = M 30 ∧ d > 30) ∨ (mType(m) = M 28 29 ∧ d < 1) ∨ (mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∨ (mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear)

The DNF form of the combined evaluation condition that
corresponds to false is

(mType(m) = M 31 ∧ d ≥ 1 ∧ d ≤ 31) ∨ (mType(m) = M 30 ∧ d ≥ 1 ∧ d ≤ 30) ∨ (mType(m) =
M 28 29 ∧ d ≥ 1 ∧ d ≤ 29 ∧ yType(y) = LYear) ∨ (mType(m) = M 28 29 ∧ d ≥ 1 ∧ d ≤
28 ∧ yType(y) = CYear)

15

TABLE 16

DayError in normal table
DayError(d, m, y) ≡
(d < 1 ∨
d > 31) ∧
mType(m) =
M 31

d ≥ 1 ∧
d ≤ 31 ∧
mType(m) =
M 31

(d < 1 ∨
d > 30) ∧
mType(m) =
M 30

d ≥ 1 ∧
d ≤ 30 ∧
mType(m) =
M 30

(d < 1 ∨ (d > 29 ∧
yType(y) = LYear) ∨ (d >
28 ∧ yType(y) = CYear)) ∧
mType(m) = M 28 29

d ≥ 1 ∧ ((d ≤ 29 ∧
yType(y) = LYear) ∨ (d ≤
28 ∧ yType(y) = CYear)) ∧
mType(m) = M 28 29

true false true false true false

TABLE 17

DayError in tree-structured table
DayError(d, m, y) ≡

mType(m) = M 31 mType(m) = M 30 mType(m) = M 28 29

d < 1 ∨ d >
31

d ≥ 1 ∧ d ≤
31

d < 1 ∨ d >
30

d ≥ 1 ∧ d ≤
30

d < 1 ∨ (d > 29 ∧ yType(y) =
LeapYear) ∨ (d > 28 ∧
yType(y) = CYear)

d ≥ 1 ∧ ((d ≤ 29 ∧
yType(y) = LeapYear) ∨ (d ≤
28 ∧ yType(y) = CYear)

true false true false true false

The list of test case constraints for the decision table-
based testing is
〈 // Derived from the combined evaluation condition corresponding to true
(mType(m) = M 31 ∧ d < 1) ∧ ¬(mType(m) = M 31 ∧ d > 31) ∧ ¬(mType(m) = M 30 ∧ d <

1) ∧ ¬(mType(m) = M 30 ∧ d > 30) ∧ ¬(mType(m) = M 28 29 ∧ d < 1) ∧ ¬(mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear),

¬(mType(m) = M 31 ∧ d < 1) ∧ (mType(m) = M 31 ∧ d > 31) ∧ ¬(mType(m) = M 30 ∧ d <

1) ∧ ¬(mType(m) = M 30 ∧ d > 30) ∧ ¬(mType(m) = M 28 29 ∧ d < 1) ∧ ¬(mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear),

¬(mType(m) = M 31 ∧ d < 1) ∧ ¬(mType(m) = M 31 ∧ d > 31) ∧ (mType(m) = M 30 ∧ d <

1) ∧ ¬(mType(m) = M 30 ∧ d > 30) ∧ ¬(mType(m) = M 28 29 ∧ d < 1) ∧ ¬(mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear),

¬(mType(m) = M 31 ∧ d < 1) ∧ ¬(mType(m) = M 31 ∧ d > 31) ∧ ¬(mType(m) = M 30 ∧ d <

1) ∧ (mType(m) = M 30 ∧ d > 30) ∧ ¬(mType(m) = M 28 29 ∧ d < 1) ∧ ¬(mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear),

¬(mType(m) = M 31 ∧ d < 1) ∧ ¬(mType(m) = M 31 ∧ d > 31) ∧ ¬(mType(m) = M 30 ∧ d <

1) ∧ ¬(mType(m) = M 30 ∧ d > 30) ∧ (mType(m) = M 28 29 ∧ d < 1) ∧ ¬(mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear),

¬(mType(m) = M 31 ∧ d < 1) ∧ ¬(mType(m) = M 31 ∧ d > 31) ∧ ¬(mType(m) = M 30 ∧ d <

1) ∧ ¬(mType(m) = M 30 ∧ d > 30) ∧ ¬(mType(m) = M 28 29 ∧ d < 1) ∧ (mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear),

¬(mType(m) = M 31 ∧ d < 1) ∧ ¬(mType(m) = M 31 ∧ d > 31) ∧ ¬(mType(m) = M 30 ∧ d <

1) ∧ ¬(mType(m) = M 30 ∧ d > 30) ∧ ¬(mType(m) = M 28 29 ∧ d < 1) ∧ ¬(mType(m) =
M 28 29 ∧ d > 29 ∧ yType(y) = LYear) ∧ (mType(m) = M 28 29 ∧ d > 28 ∧ yType(y) = CYear),

//Derived from the combined evaluation condition corresponding to false
(mType(m) = M 31 ∧ d ≥ 1 ∧ d ≤ 31) ∧ ¬(mType(m) = M 30 ∧ d ≥ 1 ∧ d ≤
30) ∧ ¬(mType(m) = M 28 29 ∧ d ≥ 1 ∧ d ≤ 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) =
M 28 29 ∧ d ≥ 1 ∧ d ≤ 28 ∧ yType(y) = CYear),
¬(mType(m) = M 31 ∧ d ≥ 1 ∧ d ≤ 31) ∧ (mType(m) = M 30 ∧ d ≥ 1 ∧ d ≤
30) ∧ ¬(mType(m) = M 28 29 ∧ d ≥ 1 ∧ d ≤ 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) =
M 28 29 ∧ d ≥ 1 ∧ d ≤ 28 ∧ yType(y) = CYear),
¬(mType(m) = M 31 ∧ d ≥ 1 ∧ d ≤ 31) ∧ ¬(mType(m) = M 30 ∧ d ≥ 1 ∧ d ≤
30) ∧ (mType(m) = M 28 29 ∧ d ≥ 1 ∧ d ≤ 29 ∧ yType(y) = LYear) ∧ ¬(mType(m) =
M 28 29 ∧ d ≥ 1 ∧ d ≤ 28 ∧ yType(y) = CYear),
¬(mType(m) = M 31 ∧ d ≥ 1 ∧ d ≤ 31) ∧ ¬(mType(m) = M 30 ∧ d ≥ 1 ∧ d ≤
30) ∧ ¬(mType(m) = M 28 29 ∧ d ≥ 1 ∧ d ≤ 29 ∧ yType(y) = LYear) ∧ (mType(m) =
M 28 29 ∧ d ≥ 1 ∧ d ≤ 28 ∧ yType(y) = CYear) 〉

The corresponding decision table is shown in Table 18.

APPENDIX D
PROOFS

The proofs for all the lemmas and theorems are given in
this appendix.

Lemma 1. Consider an irreducible DNF expression
p1 ∨ · · · ∨ pk ∨ · · · ∨ ph (h ≥ 1) not equivalent to false.
At least one solution can be found for the constraint
pk ∧

Vh

k1=1,k1 6=k
¬pk1 , where k = 1, 2, . . . , h.

Proof: The lemma is proven in two different cases: h = 1

and h > 1.

1. h = 1. The constraint simplifies to p1 as follows:
pk ∧

Vh

k1=1,k1 6=k
¬pk1 = p1. Since the constraint is not

equivalent to false, p1 is not false. Therefore, there must
be a solution to p1.

2. h > 1. To prove that at least one solution exists for
pk ∧

Vh

k1=1,k1 6=k
¬pk1 , it is only required to prove that

pk ∧
Vh

k1=1,k1 6=k
¬pk1 is not equivalent to false. It therefore

suffices to prove the following:

a. pk is not equivalent to false,
b.

Vh

k1=1,k1 6=k
¬pk1 is not equivalent to false, and

c. if pk 6= false and
Vh

k1=1,k1 6=k
¬pk1 6= false, it follows that

pk ⇒ ¬
Vh

k1=1,k1 6=k
¬pk1 is not true.

Case a is valid because no term equals false in an
irreducible DNF expression.
Case b is also valid. If

Vh

k1=1,k1 6=k
¬pk1 = false, then

Wh

k1=1,k1 6=k
pk1 = true. This is impossible for an irre-

ducible DNF expression.
We prove case c by reductio ad absurdum. If pk ⇒

¬
Vh

k1=1,k1 6=k
¬pk1 , it follows that pk ⇒

Wh

k1=1,k1 6=k
pk1 .

The expression p1 ∨ · · · ∨ pk−1 ∨ pk ∨ pk+1 ∨ · · · ∨ ph is
therefore equivalent to p1 ∨ · · · ∨ pk−1 ∨ pk+1 ∨ · · · ∨ ph,
that is, the removal of pk does not affect the result
of the expression. Hence, p1 ∨ · · · ∨ pk ∨ · · · ∨ ph is not
an irreducible DNF expression. This contradicts the
assumed premise.

Lemma 2. Suppose
Wh

k1=1(r
1
k1

∧ · · · ∧ r
dk1
k1

) is an irreducible
DNF expression that is not equivalent to true or false.
At least one solution can be found for the constraint
(r1

k ∧ · · · ∧¬rl
k ∧ · · · ∧ r

dk

k)∧
Vh

k1=1,k1 6=k
¬(r1

k1
∧ · · · ∧ r

dk1
k1

), where
k = 1, 2, . . . , h and l = 1, 2, . . . , dk.

Proof: We prove the lemma in two different cases: h = 1

and h > 1.

1. h = 1. The expression contains only one term r1
1 ∧ · · · ∧

rl
1 ∧ · · · ∧ r

d1
1 .

a. d1 = 1. The expression is r1
1 and the constraint is

¬r1
1 . Since r1

1 is not equivalent to true, a solution
for ¬r1

1 exists.
b. d1 > 1. The constraint is r1

1 ∧ · · · ∧ ¬rl
1 ∧ · · · ∧ r

d1
1 .

We prove the case by reductio ad absurdum. If no
solution exists for this constraint, r1

1∧· · ·∧¬rl
1∧· · ·∧

r
d1
1 is equivalent to false. Since the expression is in

irreducible DNF, neither ¬rl
1 nor r1

1 ∧ · · · ∧ rl−1
1 ∧

rl+1
1 ∧ · · · ∧ r

d1
1 is false. Hence, ¬rl

1 ⇒ ¬(r1
1 ∧ · · · ∧

rl−1
1 ∧ rl+1

1 ∧ · · · ∧ r
d1
1), that is, r1

1 ∧ · · · ∧ rl−1
1 ∧ rl+1

1 ∧

16

TABLE 18

Decision Table for DayError

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19
mType(m) = M 31 T − − − − − − − T T F F F F F T F F F
mType(m) = M 30 T − − − − − − − F F T T F F F F T F F

d < 1 − T T T T − − − T F T F T F F F F F F
d > 31 − T − − − T − − F T F − F − − F F F F
d > 30 − − T − − F T − F T F T F − − − F F F
d > 29 − − − T − − F T F T F T F − T − − F F
d > 28 − − − − T − − F F T F T F T T − − − F

YType = CYear − − − − − − − − − − − − − T F − − F T

true
√ √ √ √ √ √ √

false
√ √ √ √

impossible
√ √ √ √ √ √ √ √

· · · ∧ r
d1
1 ⇒ rl

1. Therefore, r1
1 ∧ · · · ∧ rl−1

1 ∧ rl
1 ∧ rl+1

1 ∧

· · · ∧ r
d1
1 ≡ r1

1 ∧ · · · ∧ rl−1
1 ∧ rl+1

1 ∧ · · · ∧ r
d1
1 , that is, rl

1

can be removed without changing the result of the
expression. This cannot take place in an irreducible
DNF expression.

2. h > 1.

a. dk = 1. In this case, the constraint (r1
k ∧ . . . ∧

¬rl
k ∧ . . . ∧ r

dk

k) ∧
Vh

k1=1,k1 6=k
¬(r1

k1
∧ . . . ∧ r

dk1
k1

)

becomes ¬r1
k ∧

Vh

k1=1,k1 6=k
¬(r1

k1
∧ . . . ∧ r

dk1
k1

). If

¬r1
k ∧

Vh

k1=1,k1 6=k
¬(r1

k1
∧ . . . ∧r

dk1
k1

) = false, r1
k ∨

Wh

k1=1,k1 6=k
(r1

k1
∧ . . . ∧ r

dk1
k1

) = true. This contradicts
the premise that the expression

Wh

k1=1(r
1
k1

∧ . . . ∧

r
dk1
k1

) is not equivalent to true.
b. dk > 1. To prove (r1

k ∧ · · · ∧ ¬rl
k ∧ · · · ∧ r

dk

k) ∧
Vh

k1=1,k1 6=k
¬(r1

k1
∧ · · · ∧ r

dk1
k1

) is not equivalent to
false, we need only prove that

i. r1
k ∧ · · · ∧ rl−1

k ∧ rl+1
k ∧ · · · ∧ r

dk

k is not equivalent to
false,

ii. ¬rl
k ∧

Vh

k1=1,k1 6=k
¬(r1

k1
∧ · · · ∧ r

dk1
k1

) is not equiva-
lent to false, and

iii. if r1
k ∧ · · · ∧ rl−1

k ∧ rl+1
k ∧ · · · ∧ r

dk

k 6= false and

¬rl
k

Vh

k1=1,k1 6=k
¬(r1

k1
∧ · · · ∧ r

dk1
k1

) 6= false, then r1
k ∧

· · ·∧rl−1
k ∧rl+1

k ∧· · ·∧r
dk

k ⇒ ¬(¬rl
k ∧

Vh

k1=1,k1 6=k
¬(r1

k1

∧ . . . ∧ r
dk1
k1

)) is not true.

Case i is valid because the expression is in irre-
ducible DNF.
We prove case ii by reductio ad absurdum.

Since ¬rl
k ∧

Vh

k1=1,k1 6=k
¬(r1

k1
∧ · · · ∧ r

dk1
k1

) ≡ false,

we have rl
k ∨

Wh

k1=1,k1 6=k
(r1

k1
∧ · · · ∧ r

dk1
k1

) ≡ true.
Hence, r1

k ∧ · · · ∧ rl−1
k ∧ rl

k ∧ rl+1
k ∧ · · · ∧ r

dk

k ∨
Wh

k1=1,k1 6=k
(r1

k1
∧ · · · ∧ r

dk1
k1

) = r1
k ∧ · · · ∧ rl−1

k ∧ rl+1
k ∧

· · · ∧ r
dk

k ∨
Wh

k1=1,k1 6=k
(r1

k1
∧ · · · ∧ r

dk1
k1

), that is, rl
k

can be removed.
We also prove case iii by reductio ad absurdum.
r1

k ∧ . . . ∧ rl−1
k ∧ rl+1

k ∧ . . . ∧ r
dk

k ⇒ ¬(¬rl
k ∧

Vh

k1=1,k1 6=k
¬(r1

k1
∧ . . . ∧ r

dk1
k1

)) ≡ r1
k ∧ . . . ∧ rl−1

k ∧

rl+1
k ∧ . . . ∧ r

dk

k ⇒ rl
k ∨

Wh

k1=1,k1 6=k
(r1

k1
∧ . . . ∧ r

dk1
k1

).
Therefore, r1

k ∧ . . . ∧ rl−1
k ∧ rl

k ∧ rl+1
k ∧ . . . ∧ r

dk

k ∨
Wh

k1=1,k1 6=k
(r1

k1
∧ . . . ∧ r

dk1
k1

) ≡ r1
k ∧ . . . ∧ rl−1

k ∧ rl+1
k

∧ . . . ∧ r
dk

k ∨
Wh

k1=1,k1 6=k
(r1

k1
∧ . . . ∧ r

dk1
k1

), that is, rl
k

can be removed without changing the result of the

expression. This contradicts the premise that the
expression is irreducible.

Theorem 1. Decision table-based testing unconditionally
subsumes the partition strategy for tabular expressions
over NDSP, that is, SD(NDSP) ⊲⊲ SP (NDSP).

Proof: To prove the theorem, it is only necessary to
prove that the two strategies satisfy CUS1 and CUS2.

CUS1. The list of test case constraints for decision table-
based testing can be rewritten in the following form for
i = 1, 2, . . . , m and j = 1, 2, . . . , n.

STCCi,j(S
D, NDSP) =

D

c
1,1
i,j ∧ · · · ∧ c

1,s1
i,j

i,j ∧

Vwi,j

k1=1,k1 6=1¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j), . . . , ck,1
i,j ∧ · · · ∧ c

k,sk
i,j

i,j ∧
Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j), . . . , c
wi,j ,1

i,j ∧ · · · ∧

c
wi,j ,s

wi,j
i,j

i,j ∧
Vwi,j

k1=1,k1 6=wi,j
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

.

If Ei,j is not false for sp ∈ NDSP, according to Lemma 1,
each constraint in STCCi,j(S

D, NDSP) is not false with re-
spect to sp. Therefore, stcci,j(S

D, sp) contains wi,j constraints.

Suppose ti,j is a test case that satisfies c
k,1
i,j ∧ · · · ∧ c

k,sk
i,j

i,j ∧
Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j) (k = 1, 2, . . . , wi,j) with re-

spect to sp. Since c
k,1
i,j ∧ . . . ∧ c

k,sk
i,j

i,j ∧
Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧

. . . ∧ c
k1,s

k1
i,j

i,j) implies the constraint c
k,1
i,j ∧ · · · ∧ c

k,sk
i,j

i,j ∨
Wwi,j

k1=1,k1 6=k(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j), it follows that ti,j satisfies this
constraint also, so that

˙

ti,j

¸

O(i,j) ∈ WT(SP , NDSP).
CUS2. If no test case satisfies decision table-based testing,

according to Lemma 1, Ei,j is false for i = 1, 2, . . . , m and j =

1, 2, . . . , n. As a result, there is no test case for the partition
strategy.

Theorem 2. The basic meaningful impact strategy
unconditionally subsumes decision table-based testing
over NDSP, that is, SB(NDSP) ⊲⊲ SD(NDSP).

Proof: Since STCC(SB , NDSP) ⊃ STCC(SD, NDSP) and the
first list in STCC(SB , NDSP) is exactly STCC(SD, NDSP), both
CUS1 and CUS2 are satisfied.

Theorem 3. a) Fault-based testing for the LOF and
LIF classes of faults conditionally subsumes the

17

basic meaningful impact strategy over NDSP, that
is, SF (NDSP) ⊲ SB(NDSP). b) The basic meaningful
impact strategy conditionally subsumes fault-based
testing for the LOF and LIF classes of faults, that is,
SB(NDSP) ⊲ SF (NDSP).

Proof: STCC(SB , NDSP)

=
D

c
k,1
i,j ∧ · · · ∧ c

k,sk
i,j

i,j ∧
^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k)

⊕
D

¬c
k,l
i,j ∧

^sk
i,j

l1=1,l1 6=l
c

k,l1
i,j ∧

^wi,j

k1=1,k1 6=k
¬(ck1,1

i,j ∧ · · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k) ∧ l=1,2,...,sk
i,j

In fault-based testing, the list of test case

constraints for LOF is
D

¬c
k,l
i,j ∧

Vsk
i,j

l1=1,l1 6=lc
k,l1
i,j ∧

Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j)
E

O(i,j,k) ∧ sk
i,j

>1 ∧ l=1,2,...,sk
i,j

⊕
D

c
k,1
i,j ∧

Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j)
E

O(i,j,k) ∧ sk
i,j

=1. The

list of test case constraints for LIF is
D

c
k,1
i,j ∧ · · · ∧ c

k,sk
i,j

i,j ∧¬c∧

Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j)
E

O(i,j,k) ∧ c∈(Li,j−Lk
i,j

).

Let STCC1(S
B , NDSP), STCC2(S

B , NDSP), . . . , STCCr(S
B ,

NDSP) denote the sublists in STCC(SB , NDSP) such that
STCC(SB , NDSP) = STCC1(S

B , NDSP) ⊕ STCC2(S
B , NDSP)

⊕ . . . ⊕ STCCr(S
B , NDSP). We can write STCC1(S

F , NDSP)

in the following format:
D

Vsk
i,j

l1=1c
k,l1
i,j ∧ ¬c

′k,1
i,j ∧

Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧ · · · ∧

c
k1,s

k1
i,j

i,j), . . . ,
Vsk

i,j

l1=1c
k,l1
i,j ∧ ¬c

′k,u
i,j ∧

Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧

· · · ∧ c
k1,s

k1
i,j

i,j)
E

O(i,j,k),

where c
′k,1
i,j , c

′k,2
i,j , . . ., c

′k,u
i,j are the elements in Li,j − Lk

i,j .
Vsk

i,j

l1=1c
k,l1
i,j ∧ ¬c

′k,1
i,j ∧

Vwi,j

k1=1,k1 6=k ¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j) implies
Vsk

i,j

l1=1c
k,l1
i,j ∧

Vwi,j

k1=1,k1 6=k ¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j). Let tk
i,j denote

a test case that satisfies the constraint
Vsk

i,j

l1=1c
k,l1
i,j ∧ ¬c

′k,1
i,j ∧

Vwi,j

k1=1,k1 6=k ¬(ck1,1
i,j ∧ · · · ∧ c

k1,s
k1
i,j

i,j) with respect to sp. The sub-
list

˙

tk
i,j

¸

O(i,j,k) satisfies stcc1(S
B , sp). If sk

i,j > 1 for each term
in Ei,j (i = 1, 2, . . . , m and j = 1, 2, . . . , n), STCC2(S

F , NDSP)

= STCC2(S
B , NDSP). Hence, if sk

i,j > 1 and Li,j − Lk
i,j 6= ∅,

SF subsumes SB ; otherwise, SF may not subsume SB .
That is, SF subsumes SB only when some sublists of
STCC(SF , NDSP) exist. Thus, fault-based testing condition-
ally subsumes the basic meaningful impact strategy.

It is obvious that, if STCC1(S
F , SPEC) = ∅ over a specifica-

tion sp, then SB subsumes SF . Thus, the basic meaningful
impact strategy conditionally subsumes fault-based testing.

Theorem 4. Fault-based testing for the LOF and LIF
classes of faults conditionally subsumes decision table-
based testing over NDSP, that is, SF (NDSP) ⊲ SD(NDSP).

Proof: The proof is similar to that of Theorem 3.
Theorem 5. Fault-based testing for the LOF and LIF classes
of faults conditionally subsumes the partition strategy over
NDSP, that is, SF (NDSP) ⊲ SP (NDSP).

Proof: Clearly, if there exists k (1 ≤ k ≤ wi,j) for each

Ei,j such that
Vsk

i,j

l1=1c
k,l1
i,j ∧¬c∧

Vwi,j

k1=1,k1 6=k¬(ck1,1
i,j ∧· · ·∧ c

k1,s
k1
i,j

i,j)

exists or sk
i,j = 1 with respect to sp ∈ NDSP, SF subsumes

SP ; otherwise, SF does not subsume SP .

REFERENCES

[1] H. Agrawal, R. A. DeMillo, B. Hathaway, W. M. Hsu, W. Hsu,
E. W. Krawser, R. J. Martin, A. P. Mathur, and E. Spafford, “Design of
mutant operators for the C programming language,” Technical Report
SERC-TR-41-P, Software Engineering Research Center, Department of
Computer Sciences, Purdue University, W. Lafayette, IN, 1989.

[2] T. A. Alspaugh, S. R. Faulk, K. H. Britton, R. A. Parker, and D. L. Par-
nas, “Software Requirements for the A-7E Aircraft,” Technical Report
NRL/FR/5530-92-9194, Naval Research Lab, Washington, DC, 1992.

[3] R. L. Baber, D. L. Parnas, S. A. Vilkomir, P. Harrison, and T. O’Connor,
“Disciplined methods of software specification: a case study,” Proceed-
ings of the International Conference on Information Technology: Coding and
Computing (ITCC 2005), vol. 2, pp. 428–437. Los Alamitos, CA: IEEE
Computer Society Press, 2005.

[4] V. R. Basili and R. W. Selby, “Comparing the effectiveness of software
testing strategies,” IEEE Transactions on Software Engineering, vol. SE-
13, no. 12, pp. 1278–1296, 1987.

[5] B. Beizer, Software Testing Techniques. New York, NY: Van Nostrand
Reinhold, 1990.

[6] T. Y. Chen, F.-C. Kuo, and R. G. Merkel, “On the statistical properties
of testing effectiveness measures,” Journal of Systems and Software,
vol. 79, pp. 591–601, 2006.

[7] T. Y. Chen and M. F. Lau, “Test case selection strategies based on
Boolean specifications,” Software Testing, Verification and Reliability,
vol. 11, no. 3, pp. 165–180, 2001.

[8] T. Y. Chen, M. F. Lau, and Y. T. Yu, “MUMCUT: a fault-based strategy
for testing Boolean specifications,” Proceedings of the 6th Asia-Pacific
Software Engineering Conference (APSEC ’99), pp. 606–613. Los Alami-
tos, CA: IEEE Computer Society Press, 1999.

[9] T. Y. Chen and Y. T. Yu, “On the expected number of failures detected
by subdomain testing and random testing,” IEEE Transactions on
Software Engineering, vol. 22, no. 2, pp. 109–119, 1996.

[10] J. J. Chilenski and S. P. Miller, “Applicability of modified condi-
tion/decision coverage to software testing,” Software Engineering Jour-
nal, vol. 9, no. 5, pp. 193–200, 1994.

[11] M. Clermont and D. L. Parnas, “Using information about functions
in selecting test cases,” in Proceedings of the 1st International Workshop
on Advances in Model-Based Testing (A-MOST 2005) (in conjunction with
Proceedings of the 27th International Conference on Software Engineering
(ICSE 2005)), ACM SIGSOFT Software Engineering Notes, vol. 30, no. 4,
pp. 1–7, 2005.

[12] R. A. DeMillo and A. J. Offutt, “Experimental results from an auto-
matic test case generator,” ACM Transactions on Software Engineering
and Methodology, vol. 2, no. 2, pp. 109–127, 1993.

[13] X. Feng, MIST: Towards a MInimum Set of Test Cases, PhD Thesis. The
University of Hong Kong, Pokfulam, Hong Kong, 2002.

[14] X. Feng, S. Marr, and T. O’Callaghan, “ESTP: an experimental soft-
ware testing platform,” Proceedings of the Testing: Academic and Indus-
trial Conference: Practice And Research Techniques (TAIC PART 2008),
pp. 59–63. Los Alamitos, CA: IEEE Computer Society Press, 2008.

[15] P. G. Frankl and E. J. Weyuker, “A formal analysis of the fault-
detecting ability of testing methods,” IEEE Transactions on Software
Engineering, vol. 19, no. 3, pp. 202–213, 1993.

[16] M. Grochtmann and K. Grimm, “Classification trees for partition
testing,” Software Testing, Verification and Reliability, vol. 3, no. 2,
pp. 63–82, 1993.

[17] P. R. Halmos, Naive Set Theory. Princeton, NJ: Van Nostrand, 1960.
Reprinted by New York, NY: Springer, 1974.

[18] K. L. Heninger, “Specifying software requirements for complex sys-
tems: new techniques and their application,” IEEE Transactions on
Software Engineering, vol. SE-6, no. 1, pp. 2–13, 1980.

18

[19] W. E. Howden, “Weak mutation testing and completeness of test
sets,” IEEE Transactions on Software Engineering, vol. SE-8, no. 4,
pp. 371–379, 1982.

[20] R. Janicki and R. Khedri, “On a formal semantics of tabular expres-
sions,” Science of Computer Programming, vol. 39, no. 2-3, pp. 189–213,
2001.

[21] R. Janicki, D. L. Parnas, and J. I. Zucker, “Tabular representations
in relational documents,” Relational Methods in Computer Science,
C. Brink, W. Kahl, and G. Schmidt, eds., pp. 184–196. New York,
NY: Springer, 1997.

[22] R. Janicki and A. Wassyng, “Tabular expressions and their relational
semantics,” Fundamenta Informaticae, vol. 67, no. 4, pp. 343–370, 2005.

[23] P. C. Jorgensen, Software Testing: a Craftsman’s Approach. Boca Raton,
FL: Auerbach Publications, 2008.

[24] G. Kaminski, G. Williams, and P. Ammann, “Reconciling perspectives
of software logic testing,” Software Testing, Verification and Reliability,
vol. 18, no. 3, pp. 149–188, 2008.

[25] D. R. Kuhn, “Fault classes and error detection capability of
specification-based testing,” ACM Transactions on Software Engineering
and Methodology, vol. 8, no. 4, pp. 411–424, 1999.

[26] M. F. Lau and Y. T. Yu, “On the relationships of faults for Boolean
specification based testing,” Proceedings of the 2001 Australian Software
Engineering Conference (ASWEC 2001), pp. 21–28. Los Alamitos, CA:
IEEE Computer Society Press, 2001.

[27] M. F. Lau and Y. T. Yu, “An extended fault class hierarchy for
specification-based testing,” ACM Transactions on Software Engineering
and Methodology, vol. 14, no. 3, pp. 247–276, 2005.

[28] S. Liu, Generating Test Cases from Software Documentation, MEng The-
sis. Department of Electrical and Computer Engineering, McMaster
University, Hamilton, Ontario, Canada, 2001.

[29] L. J. Morell, “A theory of fault-based testing,” IEEE Transactions on
Software Engineering, vol. 16, no. 8, pp. 844–857, 1990.

[30] G. J. Myers, The Art of Software Testing. New York, NY: Wiley, 1979.

[31] V. Okun, P. E. Black, and Y. Yesha, “Comparison of fault classes
in specification-based testing,” Information and Software Technology,
vol. 46, no. 8, pp. 525–533, 2004.

[32] T. J. Ostrand and M. J. Balcer, “The category-partition method for
specifying and generating functional tests,” Communications of the
ACM, vol. 31, no. 6, pp. 676–686, 1988.

[33] D. L. Parnas, “Tabular representation of relations,” Technical Report
260, McMaster University, Hamilton, Canada, 1992.

[34] D. L. Parnas, “Inspection of safety-critical software using program-
function tables,” Proceedings of the IFIP Congress, vol. 3, pp. 270–277,
1994.

[35] D. L. Parnas, G. J. K. Asmis, and J. Madey, “Assessment of safety-
critical software in nuclear power plants,” Nuclear Safety, vol. 32,
no. 2, pp. 189–198, 1991.

[36] D. L. Parnas and J. Madey, “Functional documents for computer
systems,” Science of Computer Programming, vol. 25, no. 1, pp. 41–61,
1995.

[37] D. L. Parnas, J. Madey, and M. Iglewski, “Precise documentation of
well-structured programs,” IEEE Transactions on Software Engineering,
vol. 20, no. 12, pp. 948–976, 1994.

[38] D. K. Peters and D. L. Parnas, “Using test oracles generated from
program documentation,” IEEE Transactions on Software Engineering,
vol. 24, no. 3, pp. 161–173, 1998.

[39] C. Quinn, S. Vilkomir, D. L. Parnas, and S. Kostic, “Specification of
software component requirements using the trace function method,”
Proceedings of the International Conference on Software Engineering Ad-
vances (ICSEA 2006). Los Alamitos, CA: IEEE Computer Society Press,
2006.

[40] E. Sekerinski, “Exploring tabular verification and refinement,” Formal
Aspects of Computing, vol. 15, no. 2-3, pp. 215–236, 2003.

[41] H. Shen, “Implementation of Table Inversion Algorithms,” MEng
Thesis, Department of Electrical and Computer Engineering, McMas-
ter University, Hamilton, Ontario, Canada, 1995.

[42] C.-A. Sun, Y. Dong, R. Lai, K. Y. Sim, and T. Y. Chen, “Analyzing
and extending MUMCUT for fault-based testing of general Boolean
expressions,” Proceedings of the 6th IEEE International Conference on
Computer and Information Technology (CIT 2006), pp. 184–189. Los
Alamitos, CA: IEEE Computer Society Press, 2006.

[43] K.-C. Tai, “Theory of fault-based predicate testing for computer
programs,” IEEE Transactions on Software Engineering, vol. 22, no. 8,
pp. 552–562, 1996.

[44] A. J. van Schouwen, D. L. Parnas, and J. Madey, “Documentation
of requirements for computer systems,” Proceedings of the 1st IEEE
International Symposium on Requirements Engineering, pp. 198–207. Los
Alamitos, CA: IEEE Computer Society Press, 1993.

[45] E. J. Weyuker, “More experience with data flow testing,” IEEE Trans-
actions on Software Engineering, vol. 19, no. 9, pp. 912–919, 1993.

[46] E. J. Weyuker, T. Goradia, and A. Singh, “Automatically generating
test data from a Boolean specification,” IEEE Transactions on Software
Engineering, vol. 20, no. 5, pp. 353–363, 1994.

[47] E. J. Weyuker and B. Jeng, “Analyzing partition testing strategies,”
IEEE Transactions on Software Engineering, vol. 17, no. 7, pp. 703–711,
1991.

[48] Y. T. Yu and M. F. Lau, “A comparison of MC/DC, MUMCUT and
several other coverage criteria for logical decisions,” Journal of Systems
and Software, vol. 79, no. 5, pp. 577–590, 2006.

[49] J. I. Zucker, “Transformations of normal and inverted function tables,”
Formal Aspects of Computing, vol. 8, no. 6, pp. 679–705, 1996.

19

Xin Feng received the BEng degree from Donghua
University, China, the MEng degree in software en-
gineering from Nanjing University, China, and the
PhD degree in software testing from The University
of Hong Kong. She is an assistant professor in
the Division of Science and Technology at United
International College, Zhuhai, China. She worked
in industry for years. She also worked as a senior
researcher at the University of Limerick, Ireland. Her
current research interests include mutation testing,
test data generation, test automation, and software

quality assurance. She is active in applying the research in software testing
to industry.

David Lorge Parnas received the BSc, MSc,
and PhD degrees in electrical engineering
from Carnegie Mellon University, and honorary
doctorates from ETH Zurich, Switzerland, the
Catholic University of Louvain, Belgium, and the
University of Italian Switzerland, Lugano. He has
been studying industrial software development and
publishing widely cited papers since 1969. He is
a professor emeritus of McMaster University in
Hamilton, Canada, and of the University of Limerick,
Ireland. He is an honorary professor at Ji Lin

University in China. He is licensed as a professional engineer in Ontario,
Canada. Many of his papers have been found to have lasting value. For
example, a paper written 25 years ago, based on a study of avionics
software, was recently awarded a SIGSOFT IMPACT award. In all, he has
won more than 20 awards for his contributions. In 2007, he was proud to
share the IEEE Computer Society’s onetime 60th anniversary award with
computer pioneer Professor Maurice Wilkes of Cambridge University. He is
a member of the Royal Irish Academy. He is the author of more than 265
papers and reports. Many of his papers have been repeatedly republished
and are considered classics. A collection of his papers can be found
in: Software Fundamentals: Collected Papers by David L. Parnas, D.M.
Hoffman and D.M. Weiss, editors (Addison-Wesley, 2001). He is a fellow
of the Royal Society of Canada (RSC), the ACM, the Canadian Academy
of Engineering (CAE), the Gesellschaft für Informatik (GI) in Germany, and
the IEEE.

T. H. Tse received the PhD degree from the London
School of Economics and was a visiting fellow at the
University of Oxford. He is a professor in computer
science at The University of Hong Kong. His current
research interest is in program testing, debugging,
and analysis. He is the steering committee chair of
QSIC and an editorial board member of the Journal
of Systems and Software, Software Testing, Verifi-
cation and Reliability, and Software: Practice and
Experience. He is a fellow of the British Computer
Society, a fellow of the Institute for the Management

of Information Systems, a fellow of the Institute of Mathematics and Its
Applications, and a fellow of the Hong Kong Institution of Engineers. He
was decorated with an MBE by The Queen of the United Kingdom. He is a
senior member of the IEEE.

Tony O’Callaghan received the BEng degree in
computer engineering from the University of Lim-
erick (UL) and is awaiting confirmation of the MSc
degree by research in computer science conducted
at the Interaction Design Centre at UL. He previ-
ously worked as a software engineer at the Software
Quality Research Laboratory at UL with Professor
David L. Parnas and Dr. Xin Feng. He is a practi-
tioner in a wide gamut of computer-related research.
His research interests include interaction design,
human computer interaction, software engineering,

and software testing. He also enjoys teaching, reading, and traveling.

