
To appear inProceedings of the 5th International Conference on Quality Software(QSIC 2005),
IEEE Computer Society Press, Los Alamitos, California (2005)

Fault-Based Testing of
Database Application Programs with Conceptual Data Model∗†

W. K. Chan‡, S. C. Cheung
Hong Kong University of Science and Technology

{wkchan, sccheung}@cs.ust.hk

T. H. Tse§

The University of Hong Kong
thtse@cs.hku.hk

Abstract

Database application programs typically contain
program units that use SQL statements to manipulate
records in database instances. Testing the correctness
of data manipulation by these programs is challenging.
When a tester provides a database instance to test such
a program, the program unit may output faulty SQL
statements and, hence, manipulate inappropriate database
records. Nonetheless, these failures may only be revealed
in very specific database instances.

This paper proposes to integrate SQL statements and
the conceptual data models of an application for fault-
based testing. It proposes a set of mutation operators based
on the standard types of constraint used in the enhanced
entity-relationship model. These operators are semantic in
nature. This semantic information guides the construction
of affected attributes and join conditions of mutants. The
usefulness of our proposal is illustrated by an example in
which a missing-record fault is revealed.

∗ c©2005 IEEE. This material is presented to ensure timely
dissemination of scholarly and technical work. Personal useof this
material is permitted. Copyright and all rights therein are retained
by authors or by other copyright holders. All persons copying this
information are expected to adhere to the terms and constraints invoked by
each author’s copyright. In most cases, these works may not be reposted
without the explicit permission of the copyright holder. Permission to
reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or
lists, or to reuse any copyrighted component of this work in other works
must be obtained from the IEEE.

† This research is supported in part by a grant of the Research Grants
Council of Hong Kong (Project No. HKUST 6187/02E) and a grantof The
University of Hong Kong.

‡ Part of the research was done when Chan was with The University of
Hong Kong.

§ All correspondence should be addressed to T. H. Tse at Department
of Computer Science, The University of Hong Kong, Pokfulam, Hong
Kong. Tel: (+852) 2859 2183. Fax: (+852) 2559 8447. Email:
thtse@cs.hku.hk.

Keywords: database application testing, fault-based
testing, semantic mutants.

1. Introduction

Testing is the most popular means to assure software
quality. Among the factors that may affect test results, the
environment such as the operating system and the databases
is an important issue. In particular, little research on unit
testing techniques focuses on the interaction between an
application and the databases [15]. We propose a fault-
based testing technique in this paper.

Typical database application programs (DB
applications) use structured query languages (SQL) [1],
such as Oracle 10g, to manipulate data governed by
database systems. These data are described structurally in
database systems asdatabase schemas, which are sets of
rules to define the organization and integral relationshipsof
data. A set of data records satisfying a particular database
schema is known as adatabase instance. Similarly to [15],
we define a DB application to be aprogram unitwith a
set of database schema. To process a database instance
of a database schema, a program unit acceptsparametric
input valuesand outputs relevant SQL statements, each
of which is a specification of the intended manipulation
procedure. Actual records in the database instance are then
manipulated according to the SQL statements.

To test a DB application, therefore, testers need to
handle this indirect manipulation of data. Testers input
a combination of database instances and parametric input
values, if any, applicable to run the program unit. Such a
combination defines atest caseof the DB application.

The program unit may output SQL manipulation
statements, such asSELECT, INSERT, UPDATE, and DELETE.
These statements will in turn select or modify records in the
target database instances. Testers can use either the direct
outputs (SQL statements) to observe the test results of the

1

Administrator
 HKU CS Tech Report TR-2005-06

program unit, or the derived outputs (database instances) to
observe the test results of the DB application.

The chance of revealing a failure due to a faulty SQL
statement, however, differs between these two types of
observation. Since the same SQL statement can generally
be applied to different database instances, depending
on the particular combinations of values of a database
instance, a faulty SQL data manipulation statement may
be semantically intact with some database instances. Such
a faulty SQL statement may select or modify the same set
of records in a database instance as if it were the expected
one. Detecting a failure in one database instance does not
guarantee the revealing of similar failures in other database
instances. Intuitively, when the failure is due to a faulty
SQL statement, techniques to reveal a failure at the SQL
statement level should be more cost effective than those at
the database instance level.

In view of the above, among other problems in testing
DB applications [20], there are two major challenges
for applying fault-based testing to such programs:
(a) formulating strategies to discriminate a SQL statement
from its mutants and (b) discriminating SQL statements by
means of database instances.

Intuitively, conceptual data models [11] generally
contain more semantic information, such as constraints,
than database schemas relevant to a DB application. The
latter seldom implements all the designed constraints [9].
We propose to use the information captured in conceptual
data models to facilitate testers to reason about whether a
given SQL statement issued by the program unit of a DB
application manipulates the correct sets of data. At the
level of parametric inputs and direct outputs of the program
unit, there is no need to introduce any particular database
instance. Testers may further construct database instances
to initialize the selected differentiation scheme. In thisway,
the evaluation of the DB application can also be conducted
at the database instance level.

The main contributions of this paper include:
(i) defining semantic mutation operators based on an
enhanced entity-relationship model, a type of conceptual
data model, (ii) addressing challenge (a) by exploiting the
semantic connections between the associated enhanced
entity-relationship model and embedded SQL statements
to produce SQL-oriented mutants, and (iii) alleviating
challenge (b) by cross-comparing the database records
manipulated by SQL statements and their mutants.

The rest of the paper is organized as follows: Section 2
summarizes and compares other research work related to
the current project. Section 3 will introduce a sample
application that we shall use to illustrate our proposed
technique. Based on the constraints of the enhanced entity-
relationship model defined in Section 4, semantic mutation
operators will be defined in Section 5. Section 6 develops

on Section 3, to set the scene for applying our fault-
based testing technique in Section 7. Finally, concluding
discussions will be given in Section 8.

2. Related work

2.1. Testing of database application programs

Test data selection strategies:Chan and Cheung [4]
translated embedded SQL statements into ordinary
statements to generate test cases conventionally.
Kapfhammer and Soffa [15], on the other hand, proposed
data-flow testing criteria to test DB applications directly.
Haraty et al. [12, 13] regressed DB applications and, hence,
reuse test cases by analyzing program dependencies.
Robbert and Maryanski [19], tested against individual
attributes, relations, and constraints in a given data model.

Database instance generation: (Semi-) automatic
construction of database instances lowers the cost of
testing. Chays et al. [6, 9] constructed database instances
from sample files that are produced according to category-
partitioning schemes on the database schema. Their tool
was also used in [10] to test web-based applications
by extracting URL control graphs from applications and
selecting control sequences to generate test cases. Zhang
et al. [23] translated SQL statements with database
schemas into constraints and applied constraint solvers to
produce fault-based database instances. The generation
of constraint-based database test instances was also
considered by Neufeld et al. [17].

Other related work: Súarez-Cabal and Tuya [20]
measured the extensiveness of coverage of the conditions
in target SQLSELECT statements used to identify records
in database instances. This inspires us to use located or
missing records to distinguish our mutants. Chatterjee et
al. [5] used data versioning to allow independent tests to be
executed concurrently. Offutt and Xu [18] tested XML-
based messages for web services according to mutation
operators and partitioning rules for XML schemas. Project
SQLUnit [2] uses a JUnit-like framework to test stored
procedures in databases. They render research on the
testing of DB applications increasingly practical (see
Section 2).

2.2. Fault-based and mutation testing

Fault-based testing aims at demonstrating the absence
of prescribed faults in a program [16]. According to Zhu et
al. [24], there are at least three kinds of relevant adequacy
criterion, namely, mutation testing, perturbation testing,
and error seeding.

Mutation testing [8, 14] is an effective, though
computationally expensive, fault-based software testing

2

Invoice Detail

Canceled
Invoice

Settled Detail
Normal
Invoice

0..n1 0..n1

Settled Invoice

Canceled DetailInvoice 0..n1 0..n1

Outstanding DetailOutstanding Invoice

1..n1 1..n1

Figure 1. Conceptual data model.

technique. Its core is a set of mutation operators. Each
mutation operator involves a legalsyntacticchange of a
program statement. Hence, the applications of mutation
operators to a program result in a set of mutants. For
strong mutation testing [8], a mutant is said to be killed
by a test case if the output of the mutant differs from that
of the original program. For weak mutation testing [14,
21], a mutant is killed if the program state after a mutated
statement (or component) differs from that of the original
program. In either case, such a test case can be used
to determine whether it reveals a failure of the original
program.

Morell [16] generalized mutation testing to allow the
classes of alternative expressions to be infinite. He
illustrated how to generate a symbolic expression that
described the input of an original program and its
alternative forms. The solution of a symbolic expression
determines whether a set of alternative forms can be
distinguished by a test case.

Perturbation testing [22] considers faults as attributes in
an error space. A perturbation of a function captures the
difference between the correct function and an erroneous
counterpart. This allows testers to treat faults as functional
properties instead of syntactic changes of the original
program.

Error seeding [3], injects artificial faults into a program.
Chen et al. [7], for example, injected faults dynamically
into system functions to test the exception-handling
behaviors of programs.

2.3. Comparisons

This paper proposes to generate SQL-oriented mutants
as a test data selection strategy. Like [19], we make use
of conceptual data models and require test sets to cover the
properties so defined. Unlike [19], however, we produce
mutants of SQL statements to be executed by test sets.
Moreover, our mutants conform to the data model, whereas
previous studies [17, 23] produced fault-based database
instances that aimed at violating given database constraints.

Our approach is similar to the work of Morell [16]
and Zeil [22] for conventional programs. Based on the
semantics of SQL statements and a given EER model (see
Section 4), we construct alternative constraints to depict
alternative mutants. We use the specification nature of the
SQL language to treat a SQL statement as a relation. Our
approach also allows testers to compare the mutants with
the original SQL statements at the symbolic level.

3. Invoice payment analyzer: a sample
application

Consider a conference hosting company that develops
a DB application to obtain the payment status of
their invoices. Invoices are partitioned as normal or
canceled. Normal invoices are further partitioned as
settled or outstanding, depending on whether payments
from customers are required to follow. Each invoice can
have invoice detail(s). Like invoices, invoice details are
partitioned as canceled, settled, or outstanding. When all
the details of an invoice are canceled or settled, the invoice
will be treated as settled. When full payment is received in
advance, a settled invoice will be directly createdwithout
invoice details. Furthermore, every outstanding invoice
should have at least one outstanding invoice detail. Any
canceled invoice should not have any settled or outstanding
invoice detail, but may have canceled invoice detail, if any.
All the inheritance relations described above refer to total
and disjoint specialization relations.

Figure 1 shows a conceptual data model (in UML
notation) of invoices and their details of the sample
application. The application will also be used in
Sections 5.1 and 6 to illustrate our testing technique.

4. The enhanced entity-relationship model

We use the enhanced entity-relationship model (EER
Model) [11] as the conceptual data model. Anentity is
something with properties. They are classified intoentity
types. A relationship is an association between two or
more entities. A relationship set is a set of relationships
of the same type. It can be expressed in the form of table
known as arelation. Each entity type hasattributesand
each attribute has a value domain. Every value combination
of an entity keyuniquely identifies an entity of a specific
type.

We further describe the standard types of constraint used
in the EER model. The value of anyderived attribute
is worked out from other attributes. We assume that
the given EER models capture the necessary derivation
formulas. A weak entity typehas no entity key of its
own. It is identified by anidentifying entity type. A

3

participation constraintdefines whether an entity must be
involved in some relationship. Acardinality constraint
defines the number of entities of a specified type involved
in a relationship.

The generalization / specialization completeness
constraint can be total or partial. Informally, when any
member of a superclass must also be a member of at
least one of its subclasses, then the constraint is said to
be total. Otherwise, it is known as partial. Similarly,
the generalization / specialization disjointness constraint
can be disjoint or overlapping. The former refers to the
restriction that any entity cannot also be a member of a
sibling class. Otherwise, it is known as overlapping. The
union type completeness constraintcan be total or partial.
The former means that any member in a subclass should
also be entities in all its direct superclasses. Otherwise,it
is known as partial.

5. Mutations according to SQL relations on
EER model

SQL is a fundamental element of database application
programs. In this section, we illustrate via an example
that a database schema may not capture all the constraints
defined in an EER model, and then put forward a set of
mutation operators based on SQL relations on the EER
model.

5.1. Inadequacy of database schema constraints

Let us consider the entity types in Figure 1, in which all
the specialization relations are total and disjoint. Consider
a particular database schema implementation where each
entity type is implemented as a separate table.

Since a canceled detail record can be related to a
settled, canceled, or outstanding invoice, and since the
latter invoices are in separate tables, there is no foreign key
to associate canceled detail records to invoice records. We
can see that the association betweenInvoiceandCanceled
Detail in Figure 1 isnot captured in the above database
schema.

5.2. Proposed mutation operators

We propose a set of mutation operators based on the
standard types of constraint in the EER model. They cover
mutations due to replacements, insertions, and deletions.
Table 1 shows a list of replacement mutation operators.
They are described and explained briefly via an example in
this section. We shall illustrate in more detail in Section 7
how mutants due to two of the operators, namely, PTCR
and GSDR, can be killed using the proposed technique.

s1 public int getPaymentReceived(int cutoff)
s2 throws SQLException
s3 {
s4 int amount = 0;
s5 String sql = "SELECT sum(D.dtl pay amt) " +
s6 "FROM Invoice H, InvDtl D " +
s7 "WHERE H.inv no = D.inv no " +
s8 "AND H.inv status in (’S’, ’O’) " +
s9 "AND D.dtl status in (’S, ’O’) " +
s10 "AND D.dtl unit pay amt >= " + cutoff + ";";
s11 Statement stmt = new conn.createStatement();
s12 ResultSet rs = stmt.executeQuery(sql);
s13 if (rs.next())
s14 amount = rs.getInt(1) + amount;
s15 return amount;
s16 }

Figure 2. A faulty program unit getPayment-

Received() of the invoice payment analyzer.

Insertion and deletion mutation operators can be treated
similarly.

Consider an embedded SQL statement in Figure 2. It
contains a SQL query with four join conditions over two
tables, namelyInvoice and InvDtl. These two tables
implement the type hierarchies in Figure 1, whereInvoice
andInvoice Detailare the respective base types.

PTCR: The participation constraint replacement
operator mutates the participate requirement of an entity
type from “must-participate” to “non-participate”, or vice
versa. Readers may refer to Section 7 for more details.

CDCR: The cardinality constraint replacement
operator alters the cardinalities of entity types in the
relation. It also forces the mutated entity type to
take specific (or extreme) values within the cardinality
constraints. For example, a mutant may force the relation
to select entities ofInvoice that are associated with more
than 10 entities ofInvoice Detail. This can be expressed by
adding a subquery “10 < (SELECT count(*) FROM InvDtl

D2 WHERE H.inv no = D2.inv no)”.
IWKR: The identifying / weak entity type replacement

operator determines whether an (expression on) identifying
or weak entity type(s) is involved in the relation. For
an identifying entity type, IWKR will substitute it with
a weak entity type. For a weak entity type, IWKR will
substitute it with an identifying entity type. Suppose
Invoice Detail is a weak entity type and its identifying
entity type isInvoice. A mutant can be formed by replacing
“InvDtl” in line s6 by “Invoice”, “ sum(D.dtl pay amt)” in
line s5 by “sum(D.pay amt)”, “ sum(dtl status)” in line s9

by “sum(inv status)”, and “sum(D.dtl unit pay amt)”
in line s10 according to Formula (1) in Section 6.2.

ATTR: The attribute replacement operator substitutes
(an expression on) attribute(s) by (an expression
on) other attribute(s) of a compatible type. For

4

Table 1. Replacement mutation operators.

Semantic Mutation Operator Acronym Description

Participation Constraint Replacement PTCR Toggle the participation requirements of entity types in therelation.
Cardinality Constraint Replacement CDCR Replace the cardinalities of entity types in the relation.
Identifying / Weak Entity Type Replacement IWKR Replace (an expression of) identifying type(s) by (an expression of) weak

entity type(s), or vice versa.
Attribute Replacement ATTR Replace (an expression on) attribute(s) by (an expression on) other attribute(s)

of a compatible type.
Generalization / Specialization Completeness
Replacement

GSCR Replace an expression on a partial superclass by an expression on a subclass
and the negation form of the superclass

Generalization / Specialization Disjointness
Replacement

GSDR Replace (an expression on) sibling entity type(s) by (an expression on) other
sibling entity type(s) under the same superclass.

Union Type Completeness Replacement UTCR Replace an entity type by a subclass and/or superclasses of the subclass, such
that these superclasses have the same union type constraint

example, “sum(D.dtl pay amt)” may be replaced by
“sum(D.dtl amt)”. This operator also includes the
replacement of a composite or structured attribute by its
part, and vice versa.

GSCR: The generalization / specification completeness
replacement operator substitutes an expression on a partial
superclass by an expression on a subclassand the negation
form of the superclass. Suppose we have a subclass of
normal invoices with a status of “N”, which are not settled
or outstanding. The statement “H.inv status in (’S’,

’O’)” on line s8 may be mutated to “H.inv status = ’N’

and H.inv status not in (’S’, ’O’)”.
GSDR: The generalization / specialization disjointness

replacement operator substitutes (an expression on) sibling
entity type(s) by (an expression on) other sibling entity
type(s) under the same superclass. A sample mutant is to
replace the set{Settled Invoice, Outstanding Invoice} by
the set{Settled Invoice, Canceled Invoice}. Readers may
refer to Section 7 for more details.

UTCR: The union type completeness replacement
operator replaces an entity type by (an expression on) a
subclass and/or superclass(es) of the subclass, such that
these superclasses have the same union type constraint
with the original entity type. Suppose, for example, an
entity type A has three superclassesB, C, and D, and
the inheritance relation between the former and the latter
superclasses is a complete union type relation. The entity
typeB may be replaced byA, C, D, or other combinations
of B, C, andD.

6. An implementation of invoice payment
analyzer

The sample DB application contains a database schema
(Figure 3), an EER model (Figure 1), and a program unit
(Figure 2).

CREATE TABLE Invoice (
inv_no char(10)
primary key,

inv_dt0 datetime,
inv_stl_dt datetime,
inv_status char(1),
inv_amt int,
inv_qty int,
pay_amt int,
cust_no char(10),
order_no char(15))

CREATE TABLE InvDtl (
inv_no char(10)
foreign key references
Invoice (inv_no),

dtl_no char(4),
dtl_status char(1),
dtl_amt int,
dtl_qty int,
dtl_pay_amt int,
dtl_unit_pay_amt int,
order_no char(15),
order_dtl_no char(4),
conf_item char(26),
constraint invdtl_pk
primary key (inv_no, dtl_no))

Figure 3. Database schema definition.

6.1. Database schema

Figure 3 shows the database schema for invoices and
invoice details in Microsoft SQLServer 2000 syntax. The
table Invoice implements all the entity types concerning
invoices, including Invoice, Normal Invoice, Settled
Invoice, Outstanding Invoice, andCanceled Invoice. The
derived attribute of invoice amount, shown in the column
inv amt, is equivalent to (or derived from) the sum of
dtl inv amt of the corresponding outstanding and settled
invoice details. The interpretations of the columnsinv qty

andpay amt with respect to their invoice details are similar.
In particular,dtl unit pay amt is derived through dividing
dtl pay amt by dtl qty of the same row. The other
columns are self-explanatory.

The table InvDtl implements all the entity types
concerning invoice details, includingInvoice Detail,
Canceled Detail, Settled Detail, and Outstanding Detail.
All the columns are self-explanatory.

There are two types of constraint in the database schema
in Figure 3. The constraint “inv no char(10) primary

key” specifies that the attribute / columninv no is an

5

entity key of the tableInvoice. Similarly, the entity
key of the tableInvDtl is a combination ofinv no and
dtl no. The constraint “inv no char(10) foreign key

references Invoice (inv no)” specifies that any entity in
table InvDtl should have a corresponding entity in table
Invoice in such a way that the attributesinv no on both
tables must agree with each other.

The symbols “X” for canceled, “S” for settled, and
“O” for outstanding are used for the columnsinv status

and dtl status. Thus, an invoice may be described
as canceled, settled, or outstanding using the predicates
inv status = ’X’, inv status = ’S’, or inv status =

’O’, respectively. The predicates for invoice details are
defined similarly:dtl status = ’X’ for a canceled detail,
dtl status = ’S’ for a settled detail, anddtl status =

’O’ for an outstanding detail.

6.2. Other EER model constraints and the sample
program unit

The expected function of the program unit
getPaymentReceived() calculates the total amount of
payments received for those invoices that have paid at least
some cutoff amount per quantity amount.1 The cutoff
amount is specified as an input parameter.

Suppose that, according to user requirements, the
processing logic should also take into account the effect of
directly settled invoicewithout invoice details. It should
use theInvoice table to approximate the average detail
amount per quantity amount as if the settled invoice details
were present, thus:

dtl unit pay amt=
Invoice.payamt
Invoice.Inv qty

(1)

Since this is an important requirement, we also expect this
information to be captured as constraints in the EER model.

A sample implementation of the function is shown in
Figure 2. Statementss5 to s11 in the implementation
show a SQL query statement. It simply joins the invoice
table and the invoice detail table via the invoice number
attribute (statements7). It wants to select those records in
either outstanding or settled status with the detail payment
amount per quantity amount being not less than the cutoff
amount. This sample program is faulty, however, as
if the data model perceived by the developer were an
oversimplified master-detail model, as shown in Figure 4,

1 Apart from using JDBC primitives, there are other methods, such
as SQLJ, in which an entire SQL statement with binding variables are
defined in an embedded SQLJ-directive block. The identification of SQL
statements will be easier than what has been illustrated in [15]. In the
latter case, software testers may use database application control flow
graphs [15] to find out the possible sets of statements within aprogram for
each database interaction point, such asexecuteQuery(), then mutate
the statements, and finally make changes to the program accordingly.

Invoice DetailInvoice

1..n1 1..n1

Figure 4. An oversimplified data model of
invoices and invoice details.

SELECT sum(D.dtl pay amt)

FROM Invoice H, InvDtl D

WHERE H.inv no = D.inv no

AND H.inv status in (’S’, ’O’)

AND D.dtl status in (’S’, ’O’)

AND D.dtl unit pay amt >= 〈cutoff value〉
UNION ALL

SELECT sum(H.pay amt)

FROM Invoice H

WHERE H.inv status = ’S’

AND (H.pay amt >= H.inv qty * 〈cutoff value〉)
AND NOT EXISTS (SELECT 1 FROM InvDtl D

WHERE D.inv no = H.inv no

AND D.dtl status = ’S’)

Figure 5. An expected SQL query for
getPaymentReceived().

such that every invoice must have complete records of
invoice details.

Figure 5 shows the SQL query statement expected for a
correct implementation. Compared to the faulty version in
Figure 2, it also selects those invoiceswithout any settled
invoice details. In the next section, we shall present the
fault-based approach to detect this error.

7. Applying the fault-based approach

This section illustrates how to derive fault-based
mutants from the embedded SQL statements using the
mutation operators defined in Section 5. It first analyzes
SQL statements using the predicates of corresponding
entity types. Consider the faulty SQL query in Figure 2
again. The SQL statementss5 –s10 access the tables
Invoice andInvDtl. TableInvoice is mapped to all kinds
of invoice entity type. Similarly, tableInvDtl is mapped to
all kinds of invoice detail entity type. According to the EER
model in Figure 1, by including the specialization relations,
there are in total two kinds of association related to the
SQL statement. They are the associations betweenNormal
InvoiceandSettled Detail, and those betweenOutstanding
InvoiceandOutstanding Detail.

There are known limitations in mutation testing, which
also applies to our approach. For example, the question of

6

determining whether a program mutant cannot be killed by
any possible test case is generally undecidable. However,
since SQL is a formal language and since every SQL
statement is self-contained, we believe that, unlike the
case of conventional mutants where we must consider
all relevant program states before concluding whether a
(weak) mutant can be killed, some SQL mutants can be
analyzed and compared with the original SQL statement to
determine whether it is an equivalent mutant. When it is
indeed an equivalent mutant, there is no need to use it to
synthesize a program fault for the DB application. This
also reduces the number of program mutants and, hence,
the cost of testing a subject program.

7.1. Applying the GSDR mutation operator

Let us consider the total and disjoint specialization
relation of the entity typeInvoice Detail. Settled Detailand
Outstanding Detailare defined in the relation. Testers can
apply the GSDR mutation operator. Since there are three
subclasses ofInvoice Detail, by exhaustion, there are seven
possible non-empty subsets of{Canceled Detail, Settled
Detail, Outstanding Detail}. One of them is defined in the
relation. Hence, there are six possible mutations for this
operator based on the specialization relation. Consider a
substitution that replaces the original subset by{Settled
Detail, Canceled Detail}. It will result in the following
condition fragment:

InvDtl.inv no = Invoice.inv no
AND Invoice.inv status IN (’S’, ’O’)
AND InvDtl.dtl status IN (’S’, ’X’)
AND InvDtl.dtl unit pay amt >= 〈cutoff value〉

(2)

We note the following: When testers apply
conventional, syntactic mutation operators, such as
“replace a constant by another constant”, they can also
obtain a mutant similar to that in equation (2). For example,
by replacing the constant symbol “O” by the symbol “X” in
statements9 of the faulty program, testers can generate the
same mutant. There is, however, a difference between such
syntactic mutants and our semantic mutants. Our approach
replaces the sets of logical subclasses of the superclass in
a specialization hierarchy. For example, we will generate
a mutant that replaces “(’S’, ’O’)” of statements9 by
“(’X’)”. An application of the conventional mutation
operator cannot produce such a change.

To unify the identifiers of equation 2 with those of
Figure 2, testers substitute the table identifiersInvoice and
InvDtl in equation 2 by the instance identifiers “H” and “D”,
respectively. They then substitute the unified equation 2
into the SQL statementss7 –s9 of Figure 2 to produce a

mutantM1. The embedded SQL part ofM1 will be:

SELECT sum(D.dtl pay amt)
FROM Invoice H, InvDtl D
WHERE H.inv no = D.inv no
AND H.inv status in (’S’, ’O’)
AND D.dtl status in (’S’, ’X’)
AND D.dtl unit pay amt >= 〈cutoff value〉

7.2. Applying the PTCR mutation operator

Let us illustrate the application of another mutation
operator. Consider the relation between entity types
Normal Invoiceand Settled Detail. We apply the PTCR
mutation operator. According to Figure 1, any entity
of Settled Detailmust be associated with one entity of
Normal Invoice. According to the EER model, it is
not possible to have a settled invoice detail without a
corresponding invoice. Hence, the result of applying
the mutation operator that toggles the participation
requirement ofNormal Invoicefrom “must-participate” to
“non-participate” cannot result in a legitimate mutant.

On the other hand, eachNormal Invoicemay or may
not be associated with anySettled Detail. Applying the
mutation operator, it will generate a candidate fragment of
a mutant that requires non-participation ofSettled Detail.

Invoice.inv status IN (’S’, ’O’)
AND NOT EXISTS (SELECT 1 FROM InvDtl D1

WHERE D1.inv no = Invoice.inv no
AND D1.dlt status = ’S’)

AND InvDtl.dtl unit pay amt >= 〈cutoff value〉

(3)

Here, “EXISTS (SELECT 1 ... WHERE ...)” is the standard
SQL technique for checking the existence of an entity that
fulfills a specified condition.

Thus, a second mutantM2 can be formed using
equation (3) instead of equation (2). However, the
condition “InvDtl.dtl unit pay amt >= 〈cutoff value〉”
on the last line of equation (3) uses a column of table
InvDtl, which does not exist in this case. Testers must
apply equation (1) in Section 6.2 to derive the value
of dtl unit pay amt instead. Moreover, since the
data types of the relevant columnsInvoice.pay amt,
Invoice.inv qty, and dtl unit pay amt are integers,
the formulation of the mutant uses “Invoice.pay amt

>= Invoice.inv qty * 〈cutoff value〉” instead of
“Invoice.pay amt / Invoice.inv qty >= 〈cutoff value〉”.
Furthermore, according to the EER model, the derived
attributeInvoice.pay amt is semantically equivalent to the
sum ofInvDtl.pay amt attributes of relevant invoices. The
sum of the former attribute readily substitutes the sum of
the latter attributes (as far as each entity type in the relation
is concerned). The other parts of the mutantM2 follow a
similar synthesis approach as above. Thus, the embedded

7

(a) Invoice Table

inv_no inv_dt inv_stl_dt inv_status inv_amt inv_qty pay_amt cust_no order_no

419 10/22/2004 12/31/2004 S 360 1 360 sccheung qsic04-01
3554 10/18/2005 12/02/2005 S 360 1 360 wkchan qsic05-02
304 09/22/2003 09/22/2003 S 360 1 360 thtse qsic03-03
1 06/18/2006 null X 1080 3 0 tiger qsic06-04

711 04/04/2007 null O 520 2 420 woods qsic07-05

(b) InvDtl Table

inv_no dtl_no dtl_status dtl_amt dtl_qty dtl_pay_amt dtl_unit_pay_amt order_no order_dtl_no conf_item

419 01 S 360 1 360 360 qsic04-01 01 mm test
3554 01 S 360 1 360 360 qsic05-02 01 db test
3554 02 X 200 2 0 0 qsic05-02 01 rcsm test

1 01 X 1080 3 0 0 qsic06-04 01 tournament
711 01 O 100 1 99 99 qsic07-05 01 champion
711 02 S 420 1 420 420 qsic07-05 02 sponsorship

Figure 6. Sample instances of the invoice and invoice detail tables.

SQL part ofM2 will be:

SELECT sum(H.pay amt)
FROM Invoice H
WHERE H.inv status IN (’S’, ’O’)
AND NOT EXISTS (SELECT 1 FROM InvDtl D1

WHERE D1.inv no = H.inv no
AND D1.dtl status = ’S’)

AND (H.pay amt >= H.inv qty * 〈cutoff value〉)

7.3. Weak mutation testing

Suppose that testers are interested in weak mutation
testing [14, 21]. Informally, a weak mutant is said to be
killed if the state of the mutant immediately following the
execution of the mutated statement (or component) is not
identical to that of the original program. Since we are
interested in using SQL statements to distinguish different
sets of data model constraints, we interpret that, for the
same entity type applicable to both the original program
and a mutant, if they affect different sets of records, the
mutant is said to be killed. We elaborate the concept in
more detail as follows:

In general, a program unit may involve a number of
databases and hence a number of database schemas. Let
C be a program unit with input domainD for its input
parameters andΣ = 〈σ1, σ2, . . . , σn〉 be a tuple of database
schemas. Following the description in Section 1, a DB
applicationP is a tuple〈C, Σ〉 in which each database
schemaσi in Σ is associated with an EER modelEi . A
database instance is a concrete state of a database schema.
The current program state of the DB application is the
current program state of its program unitC with the current

database instances whose schemas are defined inP. For
example, the program unitgetPaymentReceived() with the
database schema in Figure 3 constitutes the sample DB
application for illustrating our unit testing technique. The
parametric input domain forgetPaymentReceived() is the
set of valid integers.

By a similar token, a test case forP is a tupleT =
〈x, Ψ〉 in which x is an element in domainD and Ψ =
〈ψ1, ψ2, . . . , ψn〉 is a sequence of database instances
such that eachψi corresponds to a state of the database
schemaσi of the DB application. For example, the database
instance in Figure 6 with the input parametercutoff =
200 forms a test case for our sample DB application. The
direct output of the test case from the program unit consists
of SQL statements, which will be executed by a database
system with the database instances to produce derived
output, such as updated records in the database instances.

Let S be a SQL statement issued by the program unit
C associated with the database schemasΣ. Let Si (such as
M2 in our example) be a mutated SQL statement ofSafter a
mutation operator has been applied toSand the EER model
Ei . ReplacingS in C by Si produces a mutantCSi

of the

program unitC. The tuple〈CSi
, Σ〉 forms a mutant of the

DB applicationP = 〈C, Σ〉. 2

We note that a sequence of database instances, sayΨ′, is
part of a state of the DB application under test and, hence,
we distinguish mutants from the original program using the
intermediate state at the point where the SQL statement
is issued from the program unit. We may consider our

2 We observe that neither a database schema nor an EER model is
changed in our approach.

8

approach as a type of weak mutation test data selection
strategy.

Let f() be a function that accepts a SQL statementS,
a sequence of database schemas, and a sequence of their
corresponding database instances to return a set of records
manipulated byS, such that each record is annotated with
the relevant SQL statements affecting it. LetS(P, T)
denote an instance ofSwhen the DB applicationP accepts
a test caseT. A mutant Si of S is said to be killed if
f(S(P, T), Σ, Ψ′) and f(Si(P, T), Σ, Ψ′) differ. The
mutantCSi

of the program unitC is said to be killed if the

SQL-oriented mutantSi is killed. A mutant〈CSi
, Σ〉 of DB

applicationP = 〈C, Σ〉 is said to be killed if the mutantCSi
is killed.

Let us continue our example to distinguish mutants
from an original SQL statement at the database instance
level. Consider the database instances shown in Figure 6
with the input parametercutoff = 200. The faulty
sample programgetPaymentReceived() will selectsettled
invoiceswith invoice numbers 419 and 3554. On the other
hand, the mutantM2 will select the settled invoice with
invoice number 304. Since the records selected from the
entity typeSettled Invoiceare not identical, the mutant is
killed. This missing settled invoice reveals that the faulty
sample program cannot retrieve a desirable record from the
Invoice table. For this test case, the faulty DB application
produces a parametric output of 1140, which is the sum of
the 1st, 2nd, and 6th rows of theInvDtl table in Figure 6.
The expected value should be 1500, since the function is
expected also to select invoice number 340. Thus, the test
case reveals a failure.

We would like to add an interesting epilogue. Suppose
the faulty program is corrected, by substituting the
expected SQL query in Figure 5 into the relevant part on
lines s5 –s10 of Figure 2. Since the correct statement is a
union query, given an inputcutoff = 200 for the database
instance shown in Figure 6, it will return two rows, one
from each sub-query. The two returned rows are 1140
(based on the 1st, 2nd, and 6th rows of theInvDtl table)
and 360 (based on the 2nd row of theInvoice table). As
the order of the record set is not specified in the SQL
statement, it can be the row of 1140 followed by that of
360, or vice versa. We discover another fault on lines13

of Figure 2. It should be awhile statement instead of an
if statement; otherwise, it cannot process the results from
both sub-queries in the same run. Suppose the first row
in the record set is 1140. Similarly to the description in
the above paragraph, it will miss the row due to the second
sub-query. In this case, the failure is detected by mutant
M2. On the other hand, suppose the first row in the record
set is 360. The faulty program will miss to report those
invoices with invoice details. In this situation, the failure is
detected by mutantM1 instead.

8. Concluding discussions

Testing database application programs with SQL as the
tools to access and modify database instances is gaining
an increasing amount of research attention. This paper
proposes a novel fault-based testing approach to address
the special characteristics and challenges for testing DB
applications at the unit level.

The notion of mutating statements for mutation testing
of a program has a long history. It should not be
difficult to apply conventional mutation operators such as
replacing a logical connector by another syntactically legal
logical operator (say, “Invoice.inv no = InvDtl.inv no”
by “Invoice.inv no <> InvDtl.inv no”) to produce SQL-
related mutants. Hence, we assume that such mutation
operators can be defined without problem.

Furthermore, non-database-related statements can be
regarded as conventional statements of the programming
language in question. They can be tested using techniques
applicable to that programming language. For instance,
by ignoring embedded SQL statements, testers can apply
predicate testing to test Boolean expressions in a database
application program as if it were a conventional program.
Similarly, they can also apply conventional mutation
testing to test non-SQL statements.

We are currently doing experimental studies to evaluate
the effectiveness of our approach. Our initial investigation
is conducted on the sample application presented in this
paper. We mechanically generate 35 non-equivalent
mutants for this subject program, where a mutant is said to
be non-equivalent if its outcome is different from that of the
original program. For the purpose of control, we also apply
conventional mutation operators to mechanically generate
34 conventional non-equivalent mutants. On average, it
needs 4 test cases to kill all the semantic mutants, and 6
test cases to kill all the conventional mutants. The case
study shows that our approach detects 89.5% of faulty (but
not mutated) versions of the subject program, whose faults
are not limited to embedded SQL statements. On the other
hand, the conventional approach detects 78.9%. We also
find that, for the two mutation operators explained in this
paper, PTCR is more effective than GSDR, which, in turn,
is more effective than conventional operators. We must
emphasize, however, that the preliminary results are based
on a limited amount of data. We shall report our major
findings when we have accumulated more experience.

We focus, therefore, on semantic mutants of embedded
SQL statements based on the semantics of the conceptual
data model. We employ the standard types of constraint of
the EER model to formulate mutation operators. Generally
speaking, semantic information, which is invaluable to
software testers, is not as extensively available in database
schemas as in conceptual data models. For various reasons

9

such as performance [9], some desirable constraints are
not implemented in the database schemas associated with
the programs under test. To the best of our knowledge,
this work is the first of its kind to consider semantic
relationships defined in conceptual data models to generate
mutants for fault-based testing of DB applications.

We exploit the semantic information captured from the
conceptual data model, such as the relationships between
the stored and derived attributes, and combine them
with embedded SQL statements to produce SQL-oriented
mutants. Specifically, we analyze the SQL statements to
be mutated, and then find out the affected entity types,
relations, and constraints. Based on the analysis results,
mutation operators are applied to the SQL statements to
produce mutants. Without such semantic transformation,
some useful mutants, such asM2 of the sample application,
are difficult to formulate.

In view of the preference by testers to check database
instances of a DB application instead of checking SQL
data manipulation statements in its program unit, we
use database instances plus parametric inputs and derived
outputs to conduct fault-based testing to kill SQL-oriented
mutants at the database instance level.

We have illustrated our proposal through a SQL query
example. However, subquery and join conditions of SQL
data manipulation statements, includingINSERT, UPDATE,
andDELETE statements, share a lot of similarities with query
statements. The discussions in this paper can be applied
to these language constructs. Nevertheless, more thorough
investigations are recommended.

We shall further construct and evaluate formal models
to represent legal constraints and business logics for
testing purpose. Since we have not yet come up with
a satisfactory technique to derive non-equivalent SQL-
related mutants automatically, we shall seriously address
this issue. We believe that, since SQL is a language with
formal semantics, it should allow us to analyze and create
non-equivalent mutants, rather than generating a large class
of equivalent mutants. We shall conduct experiments to
determine the fault-detection capability of our proposal.
Testing DB applications with data definition statements
will also be an area to be examined. The issue of automatic
test oracles will also be addressed. Finally, we shall
construct a prototype tool to implement our approach.

Acknowledgement

We would like to thank Yong Jian Wu for conducting
experiments to help us improve the paper.

References

[1] Information Technology — Database Languages —
SQL — Part 2: Foundation (SQL / Foundation).
Document No. ISO / IEC 9075-2-2003, International
Organization for Standardization, 2003.

[2] SQLUnit Project Home Page. http://sqlunit
.sourceforge.net/, 2005.

[3] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre,
J.-C. Laprie, E. Martins, and D. Powell. Fault
injection for dependability validation: a methodology
and some applications.IEEE Transactions on
Software Engineering, 16 (2): 166–182, 1990.

[4] M. Y. Chan and S. C. Cheung. Testing database
applications with SQL semantics. InProceedings of
the 2nd International Symposium on Cooperative
Database Systems for Advanced Applications
(CODAS ’99), pages 363–374. Wollongong,
Australia, 1999.

[5] R. Chatterjee, G. Arun, S. Agarwal, B. Speckhard,
and R. Vasudevan. Using applications of data
versioning in database application development. In
Proceedings of the 26th International Conference
on Software Engineering(ICSE 2004), pages 315–
325. IEEE Computer Society Press, Los Alamitos,
California, 2004.

[6] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos,
and E. J. Weyuker. An AGENDA for testing relational
database applications.Software Testing, Verification
and Reliability, 14 (1): 17–44, 2004.

[7] F. Chen, B. G. Ryder, A. Milanova, and
D. Wonnacott. Testing of Java web services for
robustness. InProceedings of the 2004 ACM
SIGSOFT international symposium on Software
testing and analysis(ISSTA 2004), pages 23–34.
ACM Press, New York, 2004.

[8] R. A. DeMillo, R. J. Lipton, and F. G. Sayward.
Hints on test data selection: help for the practicing
programmer.IEEE Computer, 11 (4): 34–41, 1978.

[9] Y. Deng, P. G. Frankl, and D. Chays. Testing
database transactions with AGENDA. InProceedings
of the 27th International Conference on Software
Engineering (ICSE 2005), pages 78–87. IEEE
Computer Society Press, Los Alamitos, California,
2005.

[10] Y. Deng, P. G. Frankl, and J. Wang. Testing
web database applications.ACM SIGSOFT Software
Engineering Notes, 29 (5): 1–10, 2004.

[11] R. Elmasri and S. Navathe.Fundamentals of
Database Systems. Addison Wesley, Reading,
Massachusetts, 2003.

10

[12] R. A. Haraty, N. Mansour, and B. Daou. Regression
testing of database applications.Journal of Database
Management, 13 (2): 31–42, 2002.

[13] R. A. Haraty, N. Mansour, and B. Daou. Regression
test selection for database applications. In volume 3
of Advanced Topics in Database Research, K. Siau
(editor), pages 141–165. Idea Group, Hershey,
Pennsylvania, 2004.

[14] W. E. Howden. Weak mutation testing and
completeness of test sets.IEEE Transactions on
Software Engineering, SE-8 (4): 371–379, 1982.

[15] G. M. Kapfhammer and M. L. Soffa. A family
of test adequacy criteria for database-driven
applications. In Proceedings of the Joint 9th
European Software Engineering Conference and 11th
ACM SIGSOFT Symposium on the Foundation of
Software Engineering(ESEC 2003 / FSE-11), pages
98–107. ACM Press, New York, 2003.

[16] L. J. Morell. A theory of fault-based testing.IEEE
Transactions on Software Engineering, 16 (8): 844–
857, 1990.

[17] A. Neufeld, G. Moerkotte, and P. C. Lockemann.
Generating consistent test data: restricting the search
space by a generator formula.The VLDB Journal,
2 (2): 173–214, 1993.

[18] J. Offutt and W. Xu. Generating test cases for web
services using data perturbation.ACM SIGSOFT
Software Engineering Notes, 29 (5): 1–10, 2004.

[19] M. A. Robbert and F. J. Maryanski. Automated test
plan generator for database application systems.
In Proceedings of the 1991 ACM SIGSMALL / PC
symposium on Small Systems(SIGSMALL 1991),
pages 100–106. ACM Press, New York, 1991.

[20] M. J. Súarez-Cabal and J. Tuya. Using a SQL
coverage measurement for testing database
applications. In Proceedings of the 12th ACM
SIGSOFT International Symposium on Foundations
of Software Engineering(FSE-12), ACM SIGSOFT
Software Engineering Notes, 29 (6): 253–262, 2004.

[21] M. R. Woodward and K. Halewood. From weak to
strong, dead or alive? an analysis of some mutation
testing issues. InProceedings of the 2nd Workshop
on Software Testing, Analysis and Verification, pages
152–158. IEEE Computer Society Press, Washington
DC, 1988.

[22] S. J. Zeil. Testing for perturbations of program
statements. IEEE Transactions on Software
Engineering, 9 (3): 335–346, 1983.

[23] J. Zhang, C. Xu, and S. C. Cheung. Automatic
generation of database instances for white-
box testing. In Proceedings of the 25th Annual
International Computer Software and Applications
Conference(COMPSAC 2001), pages 161–165. IEEE
Computer Society Press, Los Alamitos, California,
2001.

[24] H. Zhu, P. A. V. Hall, and J. H. R. May. Software unit
test coverage and adequacy.ACM Computing Survey,
29 (4): 366–427, 1997.

11

