HKU CSIS Tech Report TR-97-02

A framework for the support of
multilingual computing environments

ZE WL Yip, Chi Lap <clyip@cs.hku.hk> Ben Kao <kao@cs.hku.hk>
David Cheung <dcheung@cs.hku.hk>
Department of Computer Science, The University of Hong Kong *

Abstract

The issue of multiple natural language support in operating systems and ap-
plication programs has appeared and reappeared under many different headings.
“Internationalization”, “localization”, “double byte character set (DBCS) support”,
“character composition support”, and “language toolkits” are only some of them.
Yet, the issue concerns so many areas that most existing solutions address only part
of the problem.

This paper describes an integrated approach which addresses the problem from a
system point of view. We outline a framework that unifies the different approaches in
supporting multilingual input, output and user interface. The idea is to design a spe-
cialized distributed system database (MLDB) and a software library (MLLib) based
on which a framework is built. Specifically, MLDB is a system-level database special-
ized in handling various information about multilingual environments. This includes
the coded character set used, input methods available, and text messages. MLLib,
on the other hand, abstracts the details of multilingual text handling and provides
programmers an application programming interface (API). With MLLib, program-
mers can easily write application programs that interact with users in more than one
natural language at the same time. We argue that these components together will
provide a system that is user-, programmer- and system administrator-friendly.

Keywords: Multilingual Computing, Natural Language Support, Network Com-
puting.

1 Natural language support

With computers networked together worldwide, transmission and distribution of data
become easy. With just a few keystrokes, one can obtain a document from the other side
of the globe. The network can thus be considered as a global base of data. Among the

*Pokfulam Road, Hong Kong. Phone: (852) 2859 2180; Fax: (852) 2859 8447


sin
HKU CSIS Tech Report TR-97-02


different types of data a computer can handle, text is perhaps the most important type.
Support of text is thus a fundamental problem in most computing environments.

To contribute to our knowledge, mere data have to be transformed into information
first. With a worldwide contribution of data in text form, a computing environment that
supports more than one natural language is a must. This need is even more apparent in
networked multiuser environments. A web search engine, as an access point to a global
network of information, is much more useful if it can find documents written in different
languages. As another example, the compilation of an online Korean-Chinese dictionary
is best done in an environment that supports both languages. FEven a personal phone
directory application may need to handle names and addresses in a foreign language.

The issue of multilingual support in operating systems and applications has appeared
and reappeared under many different headings: internationalization (also called i18n, since
there are 18 characters between the initial “i” and the final “n” in the word), localization
(110n for the same reason), double byte character set (DBCS) support, locales, language
toolkits, just to name a few. Whatever their names are, they are actually trying to tackle
the same set of problems, though in different ways: to support computing environments
that handle more than one natural language. Besides the ability of displaying characters
correctly (output), a computing environment supporting a particular language should also
provide methods for users to input its characters (input) and give a culture-specific interface
using that language (user interface). A system that provides a multilingual environment
supports more than one natural language at the same time. Although a specific set of
language and cultural settings is usually used for the user interface in such a system,
the input and output of text in more than one language should be supported in a truly
multilingual system.

Support of a multilingual computing environment is by no means trivial. In Section 2,
we discuss some of the problems that have to be solved. Current “solutions” to the prob-
lem can be put under four categories, for which we will introduce in Section 3. As we
will discuss, they often only tackle part of the problem and are thus inadequate when
applied alone. To make the computing environment truly multilingual, simultaneous use
of more than one of these solutions is required. Yet, subtle interdependencies in their im-
plementations often make it difficult to do so. For example, system administrators need to
install and maintain multiple packages for langauage support, programmers need to use a
lot of interdependent library routines to write a multilingual program, and users are often
bothered by the technical questions asked by application programs.

We believe that a unifying framework of multilingual support is needed for a system
to be truly user-, programmer- and system administrator-friendly. Our design of one such
framework is outlined in Sections 4 to 7. We take a system-resource point of view for
multilingual environment support: the choice of different language environments is seen as
the use of different sets of resources in the system. A distributed system-level database,
called MLDB, is thus designed to handle these resources, and a set of supporting routines,
called MLLib, is used to provide programmers an application programming interface.



2

Practical i1ssues

To support a multilingual environment, a number of practical issues need to be consid-

ered.
ones.

Input, output and the support of coded character sets are among the most important
Here, we briefly discuss some of the more important issues.

Coded character sets such as ANSI X3.4 (“US-ASCII”)[1], ISO 8859-1 (“Latin-17)[3],

and Unicode [2] are used to represent characters in a computer. To interoperate
with existing systems and to support more than one language, one coded character
set is often not enough. Code structuring and extension techniques can be used to
extend the number of characters a fixed code-width coded character set can hold. For
example, the international standard ISO/IEC 2022 [4] specifies one such technique
that makes use of escape codes to switch between code elements (blocks of character
codes). Alternatively, multiple coded character sets, or a universal coded character
set that contains all the scripts, can be used. Higher-level protocols that tag textual
data with the coded character set it belongs to can also be used for multiple coded
character set support. As a last resort, the system can require the user to run a
program to convert their textual data from one coded character set to another.

Input methods: Input methods enable users to enter characters in the supported lan-

Text

guages. For languages with a small number of alphabets, such as English and French,
this is often easy. A key on the keyboard simply maps to a character in the alphabet.
However, for Asian and Indic languages whose number of characters is large, more
established methods for input are needed. Multiple keystrokes map onto one char-
acter in these languages, and user feedback is usually needed in the middle of entry.
Different schemes for mapping the kevstrokes to characters thus constitute different
input methods. For example, #f& PinYin, & ZuYin, B CangJei and M8 Four
Corner are commonly used methods for Chinese input. PinYin and ZuYin use pho-
netic transcriptions of characters for input. The former uses English characters for
the transcription (“romanization”) and the latter uses a special set of phonetic char-
acters. In contrast, structural, rather than phonetic, information is used in CanglJei
and Four Corner input methods. CangJei input method assigns almost all Chinese
characters a unique key sequence by breaking them into components. Four Corner
method gives each character a number which represents the structure of the four
corners of a Chinese character.

Note that keyboard entry is not the only way characters can be input to the system.
Handwritten input and speech recognition techniques can be considered as input
methods in the general sense.

output includes both hardcopy generation and screen display. High-quality output
is often required in hardcopies, but the time constraints for generating them are
usually not tight. In contrast, real-time updates are often needed for display output.
Hence, it is often done incrementally; only the part of the screen that has been



modified is redrawn. Moreover, since the quality of screen display is often low and
its resolution fixed, further speed optimization techniques can be used. For example,
fixed-size bitmaps of character glyphs (forms of shapes) can be generated in advance.
Output of a character would then correspond to the copy of its bitmap to the screen.

Among the problems in the output of multilingual text, the handling of context
dependency and directionality are perhaps the most difficult ones.

Directionality: The assumption that all scripts run from left to right in lines from
top to bottom does not always hold in a multilingual environment. For example,
Japanese and Chinese scripts can run from top to bottom in lines from right to

left.

Context dependency: In some scripts such as Arabic and Sanskrit, the display
order and the shape of a character depend on the characters around it in the
logical order. A coded character no longer corresponds to a fixed glyph. Thus,
simple schemes for output, such as the use of the character code as an index to
a glyph, cannot be used.

We should note that for some coded character set standards context dependency and
directionality considerations are explicitly mentioned in their conformance clauses.
For example, character combination and bidirectional behavior are normative char-
acter properties and behaviors of the Unicode 2.0 standard [2, Chapter 3].

User interfaces using text have to display strings in the right language, which, in turn,
depends on the user settings. Some of the issues on the design of a multilingual user
interface include the assignment of shortcut keys, the set of allowable filenames, and
the use of graphics elements. The reader is referred to literatures such as [5], [13],
and [12] for a more detailed discussion on the practical issues involved.

Application programming interfaces (APIs) are needed for programmers to develop
multilingual applications. Besides other reasons, the breakdown of the assumption
that a character is 8 bit in size leads to the change or redesign of the API that handles
characters and strings. Other APIs are also affected. Functions for input and output
have to be modified to handle multilingual text. Network code that makes use of
information in text form (e.g., domain name service) may also need to be changed.
Indeed, all libraries that make use of character- and string-processing functions may
need to be modified or recompiled. Since incompatible changes of APIs will require
modification and recompilation of all programs that use them, it is difficult to define
or extend an API for a multilingual environment that is compatible with existing
systems.

Now we have described some of the problems we face in supporting a multilingual
environment, let us review some of the current approaches to their solutions.



3 Models for natural language support

Mechanisms such as the ANSI-C locale model or the X/Open internationalization
model [11] allow the user to specify language and cultural settings by using just one sym-
bol. For example, the locale en_US indicates an environment that uses American (US)
English (en). Indeed, these mechanisms allow the user to indirectly specify the behavior of
language-dependent program entities (code and data). Existing approaches for implement-
ing this language-dependent behavior often fall into one of the following four categories:

Conversion of data is often needed for systems that only support a limited number of
coded character sets. Internal code conversion applications are used to convert text
files to the coded character set accepted by the system. From the user’s point of
view, the conversion process may be explicit of implicit. Explicit conversion requires
user intervention and is the most popular way of implementing “language enablers”, a
layer of software above the operating system for the support of a particular language.
TwinBridge and RichWin are examples of Chinese language enablers over Microsoft
Windows. Implicit conversion, in which no user intervention is needed, is possible
if enough information about the system and the text is known. This information
includes the coded character sets the system supports, and the coded character set
the text data uses.

Since explicit code conversion requires users to know the technical details (e.g., the
coded character set used) of the documents they are processing, it is not very user-
friendly. However, it is unavoidable if the system does not have enough information.
Indeed, utilities for explicit code conversion are often provided in systems that sup-
port implicit code conversion.

Conditional inclusion is the approach often used in the development of localized soft-
ware, that is, software that is customized for a certain language environment. Instead
of maintaining multiple sets of source code of the same program for different lan-
guage environments, source code for a certain language environment is conditionally
included at compile time by means of compiler directives.

With the use of the conditional inclusion technique, the resulting code is often smaller
than that generated by the use of the selection technique described below. Also, only
one set of source code needs to be maintained. However, the downsides are that the
source would usually be less readable, the language environment is fixed at compile
time, and differently localized software needs to be separately tested.

Selection: If the number of language environments supported is limited, program entities
that depend on the language environment can be selected at run time by the use of
conditional statements in the program. Effectively, one more dimension, namely the
language environment, is associated with the program entities so that they can be
referenced environment-dependently at run time. The use of the selection technique
may or may not be transparent to the user. For example, the web browser netscape,



which allows the user to explicitly select the document encoding of a homepage, uses
the selection technique which is not transparent to the user. Nontransparent selec-
tion, besides requiring user intervention, often requires the users to know technical
information about the way the system supports multiple languages. Similar to the
case of conversion, transparency can be obtained if we have enough information about
the environment and the data we are handling.

Indirection: Program entities that should behave differently under different language
environments are factored out, stored separately, and referenced indirectly in the
program. The selection of program entities in the language environment dimension,
that is, the set of factored-out program entities to use, is determined at startup or
run time by the language environment. Message catalog implementations such as
catgets [15] and gettext follow this principle. Program code can also be indirectly
selected by the use of dynamic link libraries. The article [14] reports an implemen-
tation using such an approach.

Although most implementations of language-dependent software fall into one of the four
approaches covered above, most of them focus on only part of the problem. Conversion
mainly addresses the interoperability issue of passive data (character codes), Conditional
Inclusion simplifies the maintenance of source code of the same program though the lan-
guage environment is fixed at compile time, Selection helps the choice of program entities
dynamically, and Indirection allows both code and data to be replaced without much in-
crease in the size of executables.

Although more than one solution can be applied at the same time for multilingual sup-
port, in practice, subtle interdependencies between the solutions make the implementation
more involved. For example, a system may support two coded character sets and allow
users to select the one to use. If the system supports message catalog using the X/Open
catgets mechanism, a programmer has to explicitly change the message catalog when-
ever the coded character set the system uses changes. Handling subtleties like this is not
programmer-friendly. It would not only distract programmers from solving the problem at
hand, but also discourage them from writing multilingual programs. Moreover, the system
administrator may have to install and maintain multiple software packages for language
support; it is not very system administrator-friendly either. A unifying framework with
the goals of user-, programmer- and system administrator-friendliness is needed in a truly
multilingual environment.

4 A framework for multilingual support

The goals in our design of the framework are user-, programmer- and system administrator-
friendliness. These criteria are outlined in the following subsections.



4.1 User-friendliness

Users should not be made to answer technical questions regarding the data they are
handling whenever possible. For example, they should not be made to specify the coded
character set a document uses during editing or viewing. Also, a flexible system should
allow its users to customize their language environments.

4.2 Programmer-friendliness

Programmers should concentrate on solving the problem given to them. They should
not be forced to handle language support details such as the mode of user interaction
and character encoding schemes. However, they should be given access to these details if
they want to. In other words, multilingual text handling APIs should be nonintrusive, yet
allow access to sufficient details. Otherwise, it would discourage programmers from writing
software for a multilingual environment.

A two-line code for “ask the user to input a string” should not be expanded into a 200-
line code when the word “multilingual” is added into it. As an example, the sample code in
X11R5 Xlib Programming Manual that “creates a very simple window, connects to an input
method and displays composed text” [9]-— which essentially means “print out whatever is
input” — is six pages long. A more established code for doing essentially the same thing in
Programmer’s Supplement for Release 6 [10] is even longer — 14 pages. These are rather
programmer-hostile. Most of the code in these sample programs deals with details such
as connection to input method servers, setting the interaction style, allocation of window
areas for user feedback, event filtering and handling, and character lookup. These should
be replaced by simple one- or two-line function calls unless the programmer wants to have
full control over these details.

Using multilingual text I/O as an example, we believe that simple code like the one
shown in Figure 1 is enough for a program to print out whatever is input in a multilingual
environment. The class MLString shown there hides all the details of multilingual string
handling. A multilingual string is handled like any other string type. Whether it holds
characters in Unicode, ASCII or Latin-1 should be of no concern to the programmer who
simply wants multilingual 1/0. To provide programmers with a finer control over multilin-
gual 1/0, a set of support functions and manipulators can be implemented on MLString
and the stream classes cin and cout. For example, one of the output manipulators can be
used to enable or disable context-dependent rendering of text in the output stream. Yet,
to be friendly to programmers, whether to use these support routines for a finer control of
multilingual 1/O should be left to their decisions.

4.3 System administrator-friendliness

The implementation of the framework should not require too much intervention from
the system administrator. Use of multiple copies of software for different language environ-
ments is thus out of the question. For a certain site, centralized administration of elements



#include <iostream.h>
#include <MLString.h>
int main(void)

{

MLString mls; // Multilingual string type MLString
cin >>mls; // Input statement

cout<<mls; // Output statement

return O;

Figure 1: C+4+-style program source that prints out whatever is input

of multilingual support is preferred. This simplifies the job of system administration. It
is less likely for the system administrator to forget to update a dependent component for
multilingual support in an upgrade process, which in consequence breaks working software.

With these design goals in mind, we reckon that the existing approaches for multilingual
support, as discussed in Section 3, should be unified under a single framework.

In our design of the framework, we take a system-resource point of view of a multi-
lingual environment: the choice of different language environments is seen as the use of
different sets of resources in the system. For example, the choice of an American English
environment requires the support of a character set containing all the English alphabets
such as US-ASCII, a corresponding font, a simple input method that maps a keystroke
to a character, no directionality and minimal context-dependency support, and so on. In
our design, the correspondence between the language environment and the resource set is
stored in a specialized database, to be discussed next.

5 A Database for multilingual information

To specify a set of resources required for the support of a particular natural language, a
system-level database specialized in the handling of multilingual environment information
can be used. Specialized system-level databases are not uncommon in existing systems.
Network Information Service (NIS, formerly called YP) and Network Information Service
Plus (NIS+)[6], both designed by Sun Microsystems Inc., are examples of such databases.

Since the number of natural language computing environments can be arbitrary, it is
impractical or impossible to provide the resources to support all of them in a single system.
So, to provide the best support of a truly multilingual environment, there should be a way
to obtain the needed resources if they are not available locally. A machine should be able
to share its resources with its network peers. That way, the system would be much more
system administrator-friendly because only those resources not found in the whole network
need to be installed. A distributed database should be used so that a system can obtain



information about the resources its peers have. Again, distributed system databases are
not rare in existing systems. Servers that provide Domain Name Service (DNS) [7][8] are
actually distributed system databases.

Now we have established that a distributed system-level database specialized in the
handling of information about language environments is needed for a truly multilingual
system. Hereafter, we will call this database MLDB. Note that, besides passive data, active
data such as code for subroutines, or their associated information, can also be stored in an
MLDB. In our design, the information an MLDB can hold includes the followings:

Information about coded character sets: This includes the name and size of coded
character sets, and the number of bytes a coded character would occupy. The escape
sequences for code elements (block of character codes) in code structuring and ex-
tension standards such as ISO/IEC 2022 [4] are useful for implementors of libraries
such as MLString shown above. Code atiributes such as the name and the range of
character blocks are also used for coded character set support. Conversion tables are
essential for code conversion applications.

Localization information: This includes the names and aliases of locales, format spec-
ifications of date, time, numeric and monetary values under different language and
cultural settings, and collation order of characters. They can be used to specify the
language and cultural preferences in user interfaces.

Text handling code: Program code whose behavior depends on the language environ-
ment, such as that for character output, can be shared by clients of MLDBs. Meta-
information about them, such as the names of the dynamic link libraries they reside
on is also useful.

Text messages: Text messages and their translations, in a way similar to message cata-
logs, are contained in MLDB. Similar to GNU gettext, the current language envi-
ronment, together with the untranslated text, can be used as the key to retrieve the
translated messages.

Input methods and their associated data: Besides the code for input methods, data
such as the associated trie or state transition tables can be shared by input methods.
More general data about languages, such as the character or word frequency table for
a certain language in a certain context, can also be made available by storing them
into MLDB. Existing input methods can make use of this data to provide better user
feedback. It also facilitates the design of new input methods.

Output routines: Similar to input methods, output routines are often language environment-
dependent. Rendering rules about the handling of context dependent and directional
text can be shared by clients who need multilingual output.

Addresses: Existing servers such as font servers, input method servers, or rendering en-
gines already provide a lot of services. Their addresses can be stored in MLDB so
that they can be looked up easily by clients.



An MLDB that provides information about multilingual environments can be used by
application programs. A set of API is thus needed for the application programmers to

interface with MLDB.

6 Multilingual support libraries

To use the services for multilingual support, an application program has to contact
an MLDB for information. A set of software libraries that provides an application pro-
gramming interface (API) is thus needed. Functions in low-level multilingual support
libraries (hereafter called low-level MLLib) provide APIs for applications to communicate
directly with MLDBs in the network using a predefined protocol. They provide applica-
tion programmers a structured way to retrieve items stored in the MLDBs using a simple
query-response model. With these APIs, queries similar to the followings can be answered:

o locale="1fr" messagekey="Shutdown” translation="7

Find the translation of the message “Shutdown” in the French locale.

o charset_alias="US-ASCII” charset name="7

Find the name of the coded character set whose alias is “US-ASCII”.

Besides acting as a liaison between the application and the MLDB, low-level MLLib is
also used to provide other facilities. For example, results obtained from an MLDB can be
cached so that the response time to future identical queries is shortened. Also, when re-
quested to provide certain locally unavailable resources, low-level MLLib can transparently
obtain the missing information from its networked peers. Support of distributed resource
procurement thus becomes a facility of the low-level MLLib.

Although low-level MLLib simplifies the communication between application programs
and the MLDBs, it would not be very programmer-friendly if it is the only means of
handling language-related operations. Programmers should not be made to care about the
communication between their application and the MLDBs. Higher level support routines
are needed. These are provided by high-level MLLib, a set of library routines that make
use of the information obtained by low-level MLLib calls to do the jobs in a specialized
way. The MLString class shown in Figure 1 is an example of code in such a high level
library. It makes use of low-level MLLib functions to obtain information such as the coded
character sets supported and the input methods available so that it can handle multilingual
[/O in its own way. Other multilingual text handling functions can also be implemented
this way. For example, a function that provides explicit code conversion facilities can be
implemented as follows:

MLString convert(MLString st, Codeset a, Codeset b)
// Converts the string st from coded character set a to coded character set b
Query MLDB the source and destination codesets of the

available code conversion tables

10



Application

MLLib
Application
Application MLLD
MLLib MLDB
MLDB
Network t)
MLLib
Application
MLLib MLLib
Application MLDB Application
MLLib MLLib
Application Application

Figure 2: An architecture of a specialized distributed multilingual system database

Find the least cost conversion path
(e.g., the shortest path with least information lost,
codeset conversion from a to ¢ to b
is preferred to that from a to d to e to b)
Retrieve the required code conversion tables
Do the conversion using the tables

Besides being programmer-friendly, the combined use of MLDB and MLLib would
also ease the job of system administrators because MLDB handles the interdependencies
between natural language support modules. The distributed database architecture, which
allows application programs to obtain resources from the network, makes locally unavailable
resources available. That way, a system needs not have the whole set of resources for the
support of all possible languages. This makes system administration much easier.

7 The architecture

The general architecture for the support of multilingual computing environment is
shown in Figure 2. High- and low-level MLLib’s are bunched together and is called MLLib
in the figure. Application codes linked with MLLib can make use of the information about
the language settings from the runtime environment to query MLDB and obtain the needed
resources. In the process of handling multilingual text, MLLib transparently obtains the

11



needed resources, such as font glyphs and input methods, on behalt of the application
using them. Intermediate transformation of multilingual data, such as code conversion,
can also be done transparently if possible. Technical details on multilingual support are
thus hidden from the application users.

With this architecture, multilingual applications can be developed relatively easily by
using MLLib. Users are hidden from the details of how the system supports multilingual
text, and the system administrator’s job is eased because the maintenance of multiple
natural language environments is not needed.

We can compare our architecture of multilingual support to the architecture for graph-
ical user interface in X Window System. Low-level MLLib provides an API for application
programmers to obtain information from MLDB, while X1ib[9] provides an API for commu-
nicating with the X server. High-level MLLib simplifies programming by using information
obtained from MLDB to implement multilingual support functions, while X Toolkit sim-
plifies programming by using facilities provided by X servers to implement widgets such as
scroll bars. The difference is seen when we compare MLDB with the X server. The former
manages data and meta-information required for language support while the latter mainly
manages the display.

8 Summary

The issue of supporting a multilingual computing environment, such as the support
of coded character sets, input, output, user interface and API, has been covered in this
paper. For multilingual applications, program entities, that is, code and data, are often dif-
ferent under different language environments. Existing approaches for implementing these
language-dependent behavior often fall into one of the four categories introduced in this pa-
per: Conversion, Conditional Inclusion, Selection, and Indirection. Yet, these approaches
focus on only part of the problem. Conversion mainly addresses the interoperability prob-
lem of passive data, Conditional Inclusion simplifies the maintenance of source code of the
same program though the language environment is fixed at compile time, Selection helps
the choice of program entities dynamically, and Indirection allows both code and data to
be replaced without much increase in the size of executables. A user-, programmer- and
system administrator-friendly framework that unifies these approaches is thus needed.

As we argued, the choice of a language environment can be seen as the use of a particular
set of resources in a system. Thus, our approach to the design of a unified framework is to,
first of all, develop a distributed system database, MLDB, that is specialized in handling
these resources. The second step is to interface MLDB to application programs via a set
of software libraries, MLLib. Besides acting as a liaison between application programs
and MLDBs, MLLib also hides the details of multilingual environment handling from
application programmers. It also provides support functions that allow the application
programmers to write codes that do multilingual I/O easily.

With this architecture, multilingual applications can be developed relatively easily
by using MLLib. Users are hidden from the details of how the system supports multi-

12



lingual text. Moreover, maintenance of multiple natural language environments is not
needed. QOur approach thus achieves the goals of user-, application programmer-, and
system administrator- friendliness.

References

1]

2]

[10]

[11]

[12]

American National Standards Institute. ANSI X3.4-1977: American National Stan-
dard Code for Information Interchange, 9 June 1977.

The Unicode Consortium. The Unicode Standard, Version 2.0. The Unicode Consor-
tium, July 1996. ISBN 0-201-48345-9.

International Organization for Standardization. ISO §859-1:1987: Information pro-
cessing — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet
No. 1, 15 February 1987.

International Organization for Standardization and International Electrotechnical
Commission. [SO/IEC 2022:199/: Information technology — Character code struc-

ture and extension techniques, 1994.

Nadine Kano. Developing international software for Windows 95 and Windows NT.
Microsoft Press, 1995. ISBN 1-55615-840-8.

Chuck McManis and Sagib Jang. Network information services plus: A white paper.
Technical report, Sun Microsystems Inc., 1991.

P. Mockapetris. Domain names - concepts and facilities. Request for Comments
(Standard) RFC 1034, Internet Engineering Task Force, November 1987. Obsoletes
RFC0973; Updated by RFC1101.

P. Mockapetris. Domain names - implementation and specification. Request for Com-
ments (Standard) RFC 1035, Internet Engineering Task Force, November 1987. Ob-
soletes RFC0973; Updated by RFC1348.

Adrian Nye. Xlib Programming Manual, volume 1 of The Definitive Guides to the X
Window System. O’Reilly & Associates, Inc., third edition, 1992.

Adrian Nye. Programmer’s Supplement for Release 6 of the X Window System. The
Definitive Guides to the X Window System. O’Reilly & Associates, Inc., first edition,
September 1995.

Wendy Rannenberg and Jirgen Bettels. The X/Open internationalization model.
Digital Technical Journal, 5(3):32-42, Summer 1993.

Bill Tuthill. Solaris International Developer’s Guide. SunSoft, 1993.

13



[13] Emmanuel Uren, Robert Howard, and Tiziana Perinotti. Software Internationalization
and Localization: an Introduction. Van Nostrand Reinhold, 1993.

[14] Gayn B. Winters. International distributed systems — architectural and practical
issues. Digital Technical Journal, 5(3):53-62, Summer 1993.

[15] X/Open group members. System V Specification Supplementary Definitions, volume 3
of X/Open Portability Guide. Elsevier Science Publishers B.V., January 1987. ISBN
0-444-70176-1.

14





