
A framework for the support of

multilingual computing environments

Yip� Chi Lap �clyip�cs�hku�hk� Ben Kao �kao�cs�hku�hk�

David Cheung �dcheung�cs�hku�hk�

Department of Computer Science� The University of Hong Kong �

Abstract

The issue of multiple natural language support in operating systems and ap�
plication programs has appeared and reappeared under many di�erent headings�
�Internationalization�� �localization�� �double byte character set �DBCS� support��
�character composition support�� and �language toolkits� are only some of them�
Yet� the issue concerns so many areas that most existing solutions address only part
of the problem�

This paper describes an integrated approach which addresses the problem from a
system point of view� We outline a framework that uni	es the di�erent approaches in
supporting multilingual input� output and user interface� The idea is to design a spe�
cialized distributed system database �MLDB� and a software library �MLLib� based
on which a framework is built� Speci	cally� MLDB is a system�level database special�
ized in handling various information about multilingual environments� This includes
the coded character set used� input methods available� and text messages� MLLib�
on the other hand� abstracts the details of multilingual text handling and provides
programmers an application programming interface �API�� With MLLib� program�
mers can easily write application programs that interact with users in more than one
natural language at the same time� We argue that these components together will
provide a system that is user�� programmer� and system administrator�friendly�

Keywords� Multilingual Computing� Natural Language Support� Network Com�
puting�

� Natural language support

With computers networked together worldwide� transmission and distribution of data
become easy� With just a few keystrokes� one can obtain a document from the other side
of the globe� The network can thus be considered as a global base of data� Among the

�Pokfulam Road� Hong Kong� Phone� ����� ���	 �
��� Fax� ����� ���	 �

�

�

sin
HKU CSIS Tech Report TR-97-02

di�erent types of data a computer can handle� text is perhaps the most important type�
Support of text is thus a fundamental problem in most computing environments�
To contribute to our knowledge� mere data have to be transformed into information

�rst� With a worldwide contribution of data in text form� a computing environment that
supports more than one natural language is a must� This need is even more apparent in
networked multiuser environments� A web search engine� as an access point to a global
network of information� is much more useful if it can �nd documents written in di�erent
languages� As another example� the compilation of an online Korean�Chinese dictionary
is best done in an environment that supports both languages� Even a personal phone
directory application may need to handle names and addresses in a foreign language�
The issue of multilingual support in operating systems and applications has appeared

and reappeared under many di�erent headings� internationalization �also called i�	n� since
there are �	 characters between the initial
i� and the �nal
n� in the word�� localization
�l�
n for the same reason�� double byte character set �DBCS� support� locales� language
toolkits� just to name a few� Whatever their names are� they are actually trying to tackle
the same set of problems� though in di�erent ways� to support computing environments
that handle more than one natural language� Besides the ability of displaying characters
correctly �output�� a computing environment supporting a particular language should also
provide methods for users to input its characters �input� and give a culture�speci�c interface
using that language �user interface�� A system that provides a multilingual environment
supports more than one natural language at the same time� Although a speci�c set of
language and cultural settings is usually used for the user interface in such a system�
the input and output of text in more than one language should be supported in a truly
multilingual system�
Support of a multilingual computing environment is by no means trivial� In Section ��

we discuss some of the problems that have to be solved� Current
solutions� to the prob�
lem can be put under four categories� for which we will introduce in Section �� As we
will discuss� they often only tackle part of the problem and are thus inadequate when
applied alone� To make the computing environment truly multilingual� simultaneous use
of more than one of these solutions is required� Yet� subtle interdependencies in their im�
plementations often make it di�cult to do so� For example� system administrators need to
install and maintain multiple packages for langauage support� programmers need to use a
lot of interdependent library routines to write a multilingual program� and users are often
bothered by the technical questions asked by application programs�
We believe that a unifying framework of multilingual support is needed for a system

to be truly user�� programmer� and system administrator�friendly� Our design of one such
framework is outlined in Sections � to �� We take a system�resource point of view for
multilingual environment support� the choice of di�erent language environments is seen as
the use of di�erent sets of resources in the system� A distributed system�level database�
called MLDB� is thus designed to handle these resources� and a set of supporting routines�
called MLLib� is used to provide programmers an application programming interface�

�

� Practical issues

To support a multilingual environment� a number of practical issues need to be consid�
ered� Input� output and the support of coded character sets are among the most important
ones� Here� we brie�y discuss some of the more important issues�

Coded character sets such as ANSI X��� �
US�ASCII������ ISO 		���� �
Latin��������
and Unicode ��� are used to represent characters in a computer� To interoperate
with existing systems and to support more than one language� one coded character
set is often not enough� Code structuring and extension techniques can be used to
extend the number of characters a �xed code�width coded character set can hold� For
example� the international standard ISO�IEC �
�� ��� speci�es one such technique
that makes use of escape codes to switch between code elements �blocks of character
codes�� Alternatively� multiple coded character sets� or a universal coded character
set that contains all the scripts� can be used� Higher�level protocols that tag textual
data with the coded character set it belongs to can also be used for multiple coded
character set support� As a last resort� the system can require the user to run a
program to convert their textual data from one coded character set to another�

Input methods� Input methods enable users to enter characters in the supported lan�
guages� For languages with a small number of alphabets� such as English and French�
this is often easy� A key on the keyboard simply maps to a character in the alphabet�
However� for Asian and Indic languages whose number of characters is large� more
established methods for input are needed� Multiple keystrokes map onto one char�
acter in these languages� and user feedback is usually needed in the middle of entry�
Di�erent schemes for mapping the keystrokes to characters thus constitute di�erent
input methods� For example� PinYin� ZuYin� CangJei and Four
Corner are commonly used methods for Chinese input� PinYin and ZuYin use pho�
netic transcriptions of characters for input� The former uses English characters for
the transcription �
romanization�� and the latter uses a special set of phonetic char�
acters� In contrast� structural� rather than phonetic� information is used in CangJei
and Four Corner input methods� CangJei input method assigns almost all Chinese
characters a unique key sequence by breaking them into components� Four Corner
method gives each character a number which represents the structure of the four
corners of a Chinese character�

Note that keyboard entry is not the only way characters can be input to the system�
Handwritten input and speech recognition techniques can be considered as input
methods in the general sense�

Text output includes both hardcopy generation and screen display� High�quality output
is often required in hardcopies� but the time constraints for generating them are
usually not tight� In contrast� real�time updates are often needed for display output�
Hence� it is often done incrementally� only the part of the screen that has been

�

modi�ed is redrawn� Moreover� since the quality of screen display is often low and
its resolution �xed� further speed optimization techniques can be used� For example�
�xed�size bitmaps of character glyphs �forms of shapes� can be generated in advance�
Output of a character would then correspond to the copy of its bitmap to the screen�

Among the problems in the output of multilingual text� the handling of context
dependency and directionality are perhaps the most di�cult ones�

Directionality� The assumption that all scripts run from left to right in lines from
top to bottom does not always hold in a multilingual environment� For example�
Japanese and Chinese scripts can run from top to bottom in lines from right to
left�

Context dependency� In some scripts such as Arabic and Sanskrit� the display
order and the shape of a character depend on the characters around it in the
logical order� A coded character no longer corresponds to a �xed glyph� Thus�
simple schemes for output� such as the use of the character code as an index to
a glyph� cannot be used�

We should note that for some coded character set standards context dependency and
directionality considerations are explicitly mentioned in their conformance clauses�
For example� character combination and bidirectional behavior are normative char�
acter properties and behaviors of the Unicode ��
 standard ��� Chapter ���

User interfaces using text have to display strings in the right language� which� in turn�
depends on the user settings� Some of the issues on the design of a multilingual user
interface include the assignment of shortcut keys� the set of allowable �lenames� and
the use of graphics elements� The reader is referred to literatures such as ���� �����
and ���� for a more detailed discussion on the practical issues involved�

Application programming interfaces �APIs� are needed for programmers to develop
multilingual applications� Besides other reasons� the breakdown of the assumption
that a character is 	 bit in size leads to the change or redesign of the API that handles
characters and strings� Other APIs are also a�ected� Functions for input and output
have to be modi�ed to handle multilingual text� Network code that makes use of
information in text form �e�g�� domain name service� may also need to be changed�
Indeed� all libraries that make use of character� and string�processing functions may
need to be modi�ed or recompiled� Since incompatible changes of APIs will require
modi�cation and recompilation of all programs that use them� it is di�cult to de�ne
or extend an API for a multilingual environment that is compatible with existing
systems�

Now we have described some of the problems we face in supporting a multilingual
environment� let us review some of the current approaches to their solutions�

�

� Models for natural language support

Mechanisms such as the ANSI�C locale model or the X�Open internationalization
model ���� allow the user to specify language and cultural settings by using just one sym�
bol� For example� the locale en US indicates an environment that uses American �US�
English �en�� Indeed� these mechanisms allow the user to indirectly specify the behavior of
language�dependent program entities �code and data�� Existing approaches for implement�
ing this language�dependent behavior often fall into one of the following four categories�

Conversion of data is often needed for systems that only support a limited number of
coded character sets� Internal code conversion applications are used to convert text
�les to the coded character set accepted by the system� From the user�s point of
view� the conversion process may be explicit of implicit� Explicit conversion requires
user intervention and is the most popular way of implementing
language enablers�� a
layer of software above the operating system for the support of a particular language�
TwinBridge and RichWin are examples of Chinese language enablers over Microsoft
Windows� Implicit conversion� in which no user intervention is needed� is possible
if enough information about the system and the text is known� This information
includes the coded character sets the system supports� and the coded character set
the text data uses�

Since explicit code conversion requires users to know the technical details �e�g�� the
coded character set used� of the documents they are processing� it is not very user�
friendly� However� it is unavoidable if the system does not have enough information�
Indeed� utilities for explicit code conversion are often provided in systems that sup�
port implicit code conversion�

Conditional inclusion is the approach often used in the development of localized soft�
ware� that is� software that is customized for a certain language environment� Instead
of maintaining multiple sets of source code of the same program for di�erent lan�
guage environments� source code for a certain language environment is conditionally
included at compile time by means of compiler directives�

With the use of the conditional inclusion technique� the resulting code is often smaller
than that generated by the use of the selection technique described below� Also� only
one set of source code needs to be maintained� However� the downsides are that the
source would usually be less readable� the language environment is �xed at compile
time� and di�erently localized software needs to be separately tested�

Selection� If the number of language environments supported is limited� program entities
that depend on the language environment can be selected at run time by the use of
conditional statements in the program� E�ectively� one more dimension� namely the
language environment� is associated with the program entities so that they can be
referenced environment�dependently at run time� The use of the selection technique
may or may not be transparent to the user� For example� the web browser netscape�

�

which allows the user to explicitly select the document encoding of a homepage� uses
the selection technique which is not transparent to the user� Nontransparent selec�
tion� besides requiring user intervention� often requires the users to know technical
information about the way the system supports multiple languages� Similar to the
case of conversion� transparency can be obtained if we have enough information about
the environment and the data we are handling�

Indirection� Program entities that should behave di�erently under di�erent language
environments are factored out� stored separately� and referenced indirectly in the
program� The selection of program entities in the language environment dimension�
that is� the set of factored�out program entities to use� is determined at startup or
run time by the language environment� Message catalog implementations such as
catgets ���� and gettext follow this principle� Program code can also be indirectly
selected by the use of dynamic link libraries� The article ���� reports an implemen�
tation using such an approach�

Although most implementations of language�dependent software fall into one of the four
approaches covered above� most of them focus on only part of the problem� Conversion
mainly addresses the interoperability issue of passive data �character codes�� Conditional
Inclusion simpli�es the maintenance of source code of the same program though the lan�
guage environment is �xed at compile time� Selection helps the choice of program entities
dynamically� and Indirection allows both code and data to be replaced without much in�
crease in the size of executables�
Although more than one solution can be applied at the same time for multilingual sup�

port� in practice� subtle interdependencies between the solutions make the implementation
more involved� For example� a system may support two coded character sets and allow
users to select the one to use� If the system supports message catalog using the X�Open
catgets mechanism� a programmer has to explicitly change the message catalog when�
ever the coded character set the system uses changes� Handling subtleties like this is not
programmer�friendly� It would not only distract programmers from solving the problem at
hand� but also discourage them from writing multilingual programs� Moreover� the system
administrator may have to install and maintain multiple software packages for language
support� it is not very system administrator�friendly either� A unifying framework with
the goals of user�� programmer� and system administrator�friendliness is needed in a truly
multilingual environment�

� A framework for multilingual support

The goals in our design of the framework are user�� programmer� and system administrator�
friendliness� These criteria are outlined in the following subsections�

�

��� User�friendliness

Users should not be made to answer technical questions regarding the data they are
handling whenever possible� For example� they should not be made to specify the coded
character set a document uses during editing or viewing� Also� a �exible system should
allow its users to customize their language environments�

��� Programmer�friendliness

Programmers should concentrate on solving the problem given to them� They should
not be forced to handle language support details such as the mode of user interaction
and character encoding schemes� However� they should be given access to these details if
they want to� In other words� multilingual text handling APIs should be nonintrusive� yet
allow access to su�cient details� Otherwise� it would discourage programmers from writing
software for a multilingual environment�
A two�line code for
ask the user to input a string� should not be expanded into a �

�

line code when the word
multilingual� is added into it� As an example� the sample code in
X��R� Xlib ProgrammingManual that
creates a very simple window� connects to an input
method and displays composed text� ���� which essentially means
print out whatever is
input� � is six pages long� A more established code for doing essentially the same thing in
Programmer�s Supplement for Release � ��
� is even longer � �� pages� These are rather
programmer�hostile� Most of the code in these sample programs deals with details such
as connection to input method servers� setting the interaction style� allocation of window
areas for user feedback� event �ltering and handling� and character lookup� These should
be replaced by simple one� or two�line function calls unless the programmer wants to have
full control over these details�
Using multilingual text I�O as an example� we believe that simple code like the one

shown in Figure � is enough for a program to print out whatever is input in a multilingual
environment� The class MLString shown there hides all the details of multilingual string
handling� A multilingual string is handled like any other string type� Whether it holds
characters in Unicode� ASCII or Latin�� should be of no concern to the programmer who
simply wants multilingual I�O� To provide programmers with a �ner control over multilin�
gual I�O� a set of support functions and manipulators can be implemented on MLString

and the stream classes cin and cout� For example� one of the output manipulators can be
used to enable or disable context�dependent rendering of text in the output stream� Yet�
to be friendly to programmers� whether to use these support routines for a �ner control of
multilingual I�O should be left to their decisions�

��� System administrator�friendliness

The implementation of the framework should not require too much intervention from
the system administrator� Use of multiple copies of software for di�erent language environ�
ments is thus out of the question� For a certain site� centralized administration of elements

�

�include �iostream�h�

�include �MLString�h�

int main�void�

f
MLString mls� �� Multilingual string type MLString

cin ��mls� �� Input statement

cout��mls� �� Output statement

return 	�

g

Figure �� C���style program source that prints out whatever is input

of multilingual support is preferred� This simpli�es the job of system administration� It
is less likely for the system administrator to forget to update a dependent component for
multilingual support in an upgrade process� which in consequence breaks working software�

With these design goals in mind� we reckon that the existing approaches for multilingual
support� as discussed in Section �� should be uni�ed under a single framework�
In our design of the framework� we take a system�resource point of view of a multi�

lingual environment� the choice of di�erent language environments is seen as the use of
di�erent sets of resources in the system� For example� the choice of an American English
environment requires the support of a character set containing all the English alphabets
such as US�ASCII� a corresponding font� a simple input method that maps a keystroke
to a character� no directionality and minimal context�dependency support� and so on� In
our design� the correspondence between the language environment and the resource set is
stored in a specialized database� to be discussed next�

� A Database for multilingual information

To specify a set of resources required for the support of a particular natural language� a
system�level database specialized in the handling of multilingual environment information
can be used� Specialized system�level databases are not uncommon in existing systems�
Network Information Service �NIS� formerly called YP� and Network Information Service
Plus �NIS������ both designed by Sun Microsystems Inc�� are examples of such databases�
Since the number of natural language computing environments can be arbitrary� it is

impractical or impossible to provide the resources to support all of them in a single system�
So� to provide the best support of a truly multilingual environment� there should be a way
to obtain the needed resources if they are not available locally� A machine should be able
to share its resources with its network peers� That way� the system would be much more
system administrator�friendly because only those resources not found in the whole network
need to be installed� A distributed database should be used so that a system can obtain

	

information about the resources its peers have� Again� distributed system databases are
not rare in existing systems� Servers that provide Domain Name Service �DNS� ����	� are
actually distributed system databases�
Now we have established that a distributed system�level database specialized in the

handling of information about language environments is needed for a truly multilingual
system� Hereafter� we will call this database MLDB� Note that� besides passive data� active
data such as code for subroutines� or their associated information� can also be stored in an
MLDB� In our design� the information an MLDB can hold includes the followings�

Information about coded character sets� This includes the name and size of coded
character sets� and the number of bytes a coded character would occupy� The escape
sequences for code elements �block of character codes� in code structuring and ex�
tension standards such as ISO�IEC �
�� ��� are useful for implementors of libraries
such as MLString shown above� Code attributes such as the name and the range of
character blocks are also used for coded character set support� Conversion tables are
essential for code conversion applications�

Localization information� This includes the names and aliases of locales� format spec�
i�cations of date� time� numeric and monetary values under di�erent language and
cultural settings� and collation order of characters� They can be used to specify the
language and cultural preferences in user interfaces�

Text handling code� Program code whose behavior depends on the language environ�
ment� such as that for character output� can be shared by clients of MLDBs� Meta�
information about them� such as the names of the dynamic link libraries they reside
on is also useful�

Text messages� Text messages and their translations� in a way similar to message cata�
logs� are contained in MLDB� Similar to GNU gettext� the current language envi�
ronment� together with the untranslated text� can be used as the key to retrieve the
translated messages�

Input methods and their associated data� Besides the code for input methods� data
such as the associated trie or state transition tables can be shared by input methods�
More general data about languages� such as the character or word frequency table for
a certain language in a certain context� can also be made available by storing them
into MLDB� Existing input methods can make use of this data to provide better user
feedback� It also facilitates the design of new input methods�

Output routines� Similar to input methods� output routines are often language environment�
dependent� Rendering rules about the handling of context dependent and directional
text can be shared by clients who need multilingual output�

Addresses� Existing servers such as font servers� input method servers� or rendering en�
gines already provide a lot of services� Their addresses can be stored in MLDB so
that they can be looked up easily by clients�

�

An MLDB that provides information about multilingual environments can be used by
application programs� A set of API is thus needed for the application programmers to
interface with MLDB�

� Multilingual support libraries

To use the services for multilingual support� an application program has to contact
an MLDB for information� A set of software libraries that provides an application pro�
gramming interface �API� is thus needed� Functions in low�level multilingual support
libraries �hereafter called low�level MLLib� provide APIs for applications to communicate
directly with MLDBs in the network using a prede�ned protocol� They provide applica�
tion programmers a structured way to retrieve items stored in the MLDBs using a simple
query�response model� With these APIs� queries similar to the followings can be answered�

� locale��fr��messagekey��Shutdown��translation��

Find the translation of the message
Shutdown� in the French locale�

� charset alias��US�ASCII��charset name��

Find the name of the coded character set whose alias is
US�ASCII��

Besides acting as a liaison between the application and the MLDB� low�level MLLib is
also used to provide other facilities� For example� results obtained from an MLDB can be
cached so that the response time to future identical queries is shortened� Also� when re�
quested to provide certain locally unavailable resources� low�level MLLib can transparently
obtain the missing information from its networked peers� Support of distributed resource
procurement thus becomes a facility of the low�level MLLib�
Although low�level MLLib simpli�es the communication between application programs

and the MLDBs� it would not be very programmer�friendly if it is the only means of
handling language�related operations� Programmers should not be made to care about the
communication between their application and the MLDBs� Higher level support routines
are needed� These are provided by high�level MLLib� a set of library routines that make
use of the information obtained by low�level MLLib calls to do the jobs in a specialized
way� The MLString class shown in Figure � is an example of code in such a high level
library� It makes use of low�level MLLib functions to obtain information such as the coded
character sets supported and the input methods available so that it can handle multilingual
I�O in its own way� Other multilingual text handling functions can also be implemented
this way� For example� a function that provides explicit code conversion facilities can be
implemented as follows�

MLString convert�MLString st
 Codeset a
 Codeset b�

 Converts the string st from coded character set a to coded character set b

Query MLDB the source and destination codesets of the
available code conversion tables

�

MLDB

MLDB

MLLib

Application

MLLib

Application

MLLib

Application

MLLib

Application

MLLib

Application

MLLib

Application

MLLib

Application

MLLib

Application
MLDB

Network

Figure �� An architecture of a specialized distributed multilingual system database

Find the least cost conversion path
�e�g�� the shortest path with least information lost�

codeset conversion from a to c to b

is preferred to that from a to d to e to b�
Retrieve the required code conversion tables
Do the conversion using the tables

Besides being programmer�friendly� the combined use of MLDB and MLLib would
also ease the job of system administrators because MLDB handles the interdependencies
between natural language support modules� The distributed database architecture� which
allows application programs to obtain resources from the network� makes locally unavailable
resources available� That way� a system needs not have the whole set of resources for the
support of all possible languages� This makes system administration much easier�

� The architecture

The general architecture for the support of multilingual computing environment is
shown in Figure �� High� and low�level MLLib�s are bunched together and is called MLLib
in the �gure� Application codes linked with MLLib can make use of the information about
the language settings from the runtime environment to query MLDB and obtain the needed
resources� In the process of handling multilingual text� MLLib transparently obtains the

��

needed resources� such as font glyphs and input methods� on behalf of the application
using them� Intermediate transformation of multilingual data� such as code conversion�
can also be done transparently if possible� Technical details on multilingual support are
thus hidden from the application users�
With this architecture� multilingual applications can be developed relatively easily by

using MLLib� Users are hidden from the details of how the system supports multilingual
text� and the system administrator�s job is eased because the maintenance of multiple
natural language environments is not needed�
We can compare our architecture of multilingual support to the architecture for graph�

ical user interface in X Window System� Low�level MLLib provides an API for application
programmers to obtain information from MLDB� while Xlib��� provides an API for commu�
nicating with the X server� High�level MLLib simpli�es programming by using information
obtained from MLDB to implement multilingual support functions� while X Toolkit sim�
pli�es programming by using facilities provided by X servers to implement widgets such as
scroll bars� The di�erence is seen when we compare MLDB with the X server� The former
manages data and meta�information required for language support while the latter mainly
manages the display�

� Summary

The issue of supporting a multilingual computing environment� such as the support
of coded character sets� input� output� user interface and API� has been covered in this
paper� For multilingual applications� program entities� that is� code and data� are often dif�
ferent under di�erent language environments� Existing approaches for implementing these
language�dependent behavior often fall into one of the four categories introduced in this pa�
per� Conversion� Conditional Inclusion� Selection� and Indirection� Yet� these approaches
focus on only part of the problem� Conversion mainly addresses the interoperability prob�
lem of passive data� Conditional Inclusion simpli�es the maintenance of source code of the
same program though the language environment is �xed at compile time� Selection helps
the choice of program entities dynamically� and Indirection allows both code and data to
be replaced without much increase in the size of executables� A user�� programmer� and
system administrator�friendly framework that uni�es these approaches is thus needed�
As we argued� the choice of a language environment can be seen as the use of a particular

set of resources in a system� Thus� our approach to the design of a uni�ed framework is to�
�rst of all� develop a distributed system database� MLDB� that is specialized in handling
these resources� The second step is to interface MLDB to application programs via a set
of software libraries� MLLib� Besides acting as a liaison between application programs
and MLDBs� MLLib also hides the details of multilingual environment handling from
application programmers� It also provides support functions that allow the application
programmers to write codes that do multilingual I�O easily�
With this architecture� multilingual applications can be developed relatively easily

by using MLLib� Users are hidden from the details of how the system supports multi�

��

lingual text� Moreover� maintenance of multiple natural language environments is not
needed� Our approach thus achieves the goals of user�� application programmer�� and
system administrator� friendliness�

References

��� American National Standards Institute� ANSI X��������	 American National Stan�
dard Code for Information Interchange� � June �����

��� The Unicode Consortium� The Unicode Standard
 Version ���� The Unicode Consor�
tium� July ����� ISBN
��
���	������

��� International Organization for Standardization� ISO

����	��
�	 Information pro�
cessing �
�bit single�byte coded graphic character sets � Part �	 Latin alphabet
No� �� �� February ��	��

��� International Organization for Standardization and International Electrotechnical
Commission� ISO�IEC ����	����	 Information technology � Character code struc�
ture and extension techniques� �����

��� Nadine Kano� Developing international software for Windows �� and Windows NT�
Microsoft Press� ����� ISBN ��������	�
�	�

��� Chuck McManis and Sagib Jang� Network information services plus� A white paper�
Technical report� Sun Microsystems Inc�� �����

��� P� Mockapetris� Domain names � concepts and facilities� Request for Comments
�Standard� RFC �
��� Internet Engineering Task Force� November ��	�� Obsoletes
RFC
���� Updated by RFC��
��

�	� P� Mockapetris� Domain names � implementation and speci�cation� Request for Com�
ments �Standard� RFC �
��� Internet Engineering Task Force� November ��	�� Ob�
soletes RFC
���� Updated by RFC���	�

��� Adrian Nye� Xlib Programming Manual� volume � of The De�nitive Guides to the X
Window System� O�Reilly Associates� Inc�� third edition� �����

��
� Adrian Nye� Programmer�s Supplement for Release � of the X Window System� The
De�nitive Guides to the X Window System� O�Reilly Associates� Inc�� �rst edition�
September �����

���� Wendy Rannenberg and J!urgen Bettels� The X�Open internationalization model�
Digital Technical Journal� �������"��� Summer �����

���� Bill Tuthill� Solaris International Developer�s Guide� SunSoft� �����

��

���� Emmanuel Uren� Robert Howard� and Tiziana Perinotti� Software Internationalization
and Localization	 an Introduction� Van Nostrand Reinhold� �����

���� Gayn B� Winters� International distributed systems � architectural and practical
issues� Digital Technical Journal� �������"��� Summer �����

���� X�Open group members� System V Speci�cation Supplementary De�nitions� volume �
of X�Open Portability Guide� Elsevier Science Publishers B�V�� January ��	�� ISBN

������
������

��

