
All-Adjacent Matrices and Their Application to

Disk Shadowing

Francis C.M. Lau�

Department of Computer Science

University of Hong Kong

November 1996

Abstract

We present the combinatorial design for a kind of matrices called all-adjacent

matrices. Such a matrix is constructed from a given set of elements; each ele-

ment of the matrix is adjacent, within some column, to every other element of

the set. We present the algorithm for constructing an all-adjacent matrix. These

matrices have an important application—to the laying out of logical disks in a

shadowed disk system so that the seek distance of read requests is minimized.

1 Introduction

Given a set of elements, A � faig. The problem is to design a two-dimensional

matrix, B, of dimension m � n, such that every element in A is adjacent to every

other element in A in one or more columns. We say that the elements satisfy the all-

adjacency requirement and the matrix is an all-adjacent matrix. An element is adjacent

to another element if they are in the same column and their positions within the

column differ by one. Here is an example:

A � f�� �� �� �g

�Correspondence: F.C.M. Lau, Department of Computer Science, The University of Hong Kong,

Pokfulam Road, Hong Kong / Email: fcmlau@cs.hku.hk / Fax: (+852) 2559 8447

1

sin
HKU CSIS Tech Report TR-96-08

B �

�
�������

� �

� �

� �

� �

�
�������

B is an all-adjacent matrix for the set A. A simple inspection can verify that: � is

adjacent to � in column 1 and to �� � in column 2, etc. If every element in an all-

adjacent matrix is adjacent to every other element in exactly one column, the matrix

is a perfect all-adjacent matrix. B in the above example is one.

Let c be the cardinality of A. There are
�c
�

�
�

c�c���
� distinct pairs of ai’s. There

are m � � pairs of adjacent slots in every column of B. Therefore, for perfect all-

adjacency, n�m � �� �
c�c���

� . For the application we present in this paper, m � c,

and hence n � c
� ; that is, B is non-square and has dimension c� c

� .

2 The Application

This work is motivated by the following practical problem in computer science.

Replicated disk system. Given c logical cylinders and d identical disks

(each having c physical cylinders). Map the logical cylinders to the disks

so that the performance of certain disk operations is improved.

The case in which the disks maintain identical copies of the same logical cylinder

sequence is called disk shadowing [1]. Disk shadowing with d � � is also called disk

mirroring or duplexing. With data replicated in multiple disks, a read operation can

be performed more efficiently. This is so because at some random point in time, the

disk heads of the disks are expected to be at random positions, and the next read

can be served by the disk whose head is closest to the requested cylinder. For the

write operation, however, all the cylinders (one in each disk) concerned must be

written, which would take a longer time than the write operation in a single-disk

system on average. Bitton and Gray first analyzed the behavior of shadowed disk

systems [1, 2]. Their results were later on revised by Lo and Matloff who observed

that every time a write operation is performed, it destroys the randomness of the

positions of the heads, and the several reads that follow will not be able to enjoy a

much reduced seek time [5].

2

We propose in this paper a scheme in which the read operation can always be

finished in optimal time. In fact, with the ideal configuration (one using c
� disks),

the head needs to travel across at most one or two cylinders. Our scheme applies

different mappings from logical cylinders to physical cylinders to different disks.

Our scheme should still be called a shadowed disk scheme, because the data con-

tents in any one disk are exactly the same as those in another disk, even though the

two sets of contents are organized differently. Figure 1 shows the case of c � � and

d � �.

1

2

3

4

5

6

7

8

4

8

5

7

3

2

8

1

6

3

4

5

2

7

5

8

3

1

2

4

7

6

3

5

1

7

8

2

6

4

1

6

cylinders
physical

disk 1 disk 2 disk 3 disk 4

logical cylinder 7

Figure 1: An �-cylinder, �-disk system

The important property of the scheme is that every logical cylinder is adjacent to

every other logical cylinder in one of the disks. Therefore, every time after a write,

we can always find a disk in which the cylinder requested by a read request that

follows is either under the head or adjacent to the head. For instance, in Figure 1,

after writing logical cylinder 	, a read request for logical cylinder � can be served

by disk � in optimal time (crossing one cylinder). If the disks are designed to have

their heads always return to the previous position after a read operation, then the

system of disks will always be in the perfect situation where every logical cylinder

is either directly under some head or one cylinder away from some head. This auto-

matic returning is bounded by the seek distance of one cylinder, which should not

be too great a cost to bear. In fact, automatic returning is similar in certain respects

3

to the anticipatory scheme proposed by King [4]. Even if automatic returning is not

done, the worst performance of a read is only that of crossing two cylinders, assum-

ing that a head is not allowed to move beyond the two neighbors (or one neighbor

for cylinders at the margins) of the last logical cylinder written. We refer to the au-

tomatic returning strategy as anchoring and the latter strategy as confinement. We

argue that both strategies are easy to implement in a disk’s firmware.

This scheme optimizes the performance of the read operation, which however

is at the expense of the write operation. The write operation becomes worse than

that in normal shadowed disk systems, which is due to the fact that for any logical

cylinder, one of its copies would be situated at one end of some disk; and so there

is the likelihood that the two logical cylinders of two consecutive writes are O�c�

apart in seek distance in some disk. Still, we contend that the scheme is most useful

for systems which have a large read/write ratio. Examples of such systems abound,

which include many digital libraries that are accessible via the Internet.

This paper presents the algorithm for generating a perfect all-adjacent matrix of

dimension c�d, of which each column corresponds to the layout of logical cylinders

in one of the disks in the disk array.

3 The Algorithm

Given c cylinders that are numbered from � to c. For perfect all-adjacency, we need

d � c
� disks. Assume d is even, and c � �. The following algorithm generates the

matrix B. A typical element of B is denoted by Bj�k, where � � j � c is the row

index, � � k � d the column index. Logical cylinder i would be placed in physical

cylinder j of disk k if Bj�k � i.

1. Form the d� d matrix S:

Si�j � Xi�j�� mod d

where

X �

	

�

�

�� �� � � � � d �z �
even

� d� �� d� �� � � � � � �z �
odd

if d is even

�� �� � � � � d �z �
even

� d
 �� d� �� � � � � � �z �
odd

if d is odd

4

2. Let k � bd�c. Form the d� d matrix F :

Case 1—d odd, k odd:

Fi�j �

	�
�

� if Si�j is odd and � k

� otherwise

Case 2—d odd, k even:

Fi�j �

	�
�

� if Si�j is even and � k

� otherwise

Case 3—d even:

Fi�j �

	

�

�

� if Si�j is odd and � k, and i � k

� if Si�j is even and � k, and i � k

� otherwise

3. Form the c� d matrix B:

fBi�j � B�i�jg �

	�
�

f�l � �� �lg � l � f�� � � � � dg j Sj�l � i and Fj�l � �

f�l� �l � �g � l � f�� � � � � dg j Sj�l � i and Fj�l � �

where i � �� �� � � � � d� and �i � d
 �� i.

4 Some Examples

We apply the algorithm to the case of c � ��; we need d � 	 disks. The matrices S,

F , and B are of dimension 	� 	, 	� 	, and ��� 	, respectively.

1. d is even, and so the sequence X is

�� �� 	� � �� �

This sequence as it is equals exactly to the first column of the matrix S. The

second column is a rotation (downward by one position) of the first column,

and similarly for the other columns. Hence, S is as follows.

S �

�
��������������

� � 	 � �

� 	 � � �

	 � � � �

 � � � � 	

� � � � 	

� � � 	 �

�
��������������

5

2. d is even; k � bd�c � �, is odd. The matrix F , being superimposed on the

matrix S, is as follows.

F � S �

�
��������������

� � 	 � �

� 	 � � �

	 � � � �

 � � � � 	

� � � � 	

� � � 	 �

�
��������������

where a boxed entry corresponds to a � in the F matrix, and � otherwise.

3. Now with the matrices S and F , we can generate the final matrix, B.

B �

�
���������������������������������

�� �� � � �

� �� � � 	 �

�� � 	 � � ��

� � �� � �

� � � �� �

 � � �� � �

	 � � �� �� �

� 	 � � �� ��

� � �� �� � 	

� � � � ��

� �� �� � �

�� � � 	 � �

�
���������������������������������

The first column of the matrixB can then be used for arranging the logical cylinders

in the first disk, the second column for the second disk, and so on. It is easy to verify

by inspection that the above matrix B is a perfect all-adjacency matrix.

6

Here is one more example, for the case of an odd d. Let c � ��; d � ��
� � �;

k � b��c � �. The matrix S and F combined, and the matrix B are as follows.

F � S �

�
�����������������

� � 	 � � �

� 	 � � � �

	 � � � � �

� � � � � 	

 � � � � 	 �

� � � � 	 �

� � � 	 � �

�
�����������������

B �

�
���������������������������������������

�� �� �� � 	 � �

� �� �� � � �

�� �� � 	 � � ��

� � �� �� � �

� � � � �� ��

 � � �� �� � �

� � � �� �� �

� 	 � � �� �� ��

	 � � �� �� �� �

�� � 	 � � �� ��

� � �� �� �� � 	

�� � � � � ��

� �� �� �� � 	 �

�� �� � � � �

�
���������������������������������������

5 Proof of Correctness

The strategy of the algorithm is to divide the logical cylinders (that is, the elements,

faig � f�� � � � � cg, of the set A) into pairs. There are c elements, which are paired

up into f�� �g� f�� �g� � � � � fc � �� cg. The outcome of the algorithm is that any one

pair will be placed adjacent to any other pair in two of the columns in B. In one of

the these two cases, the order of the elements of one of the pairs will be reversed.

The reason is clear when looking at the example in Figure 2. The pairs are f�� �g

7

idisk disk j

3

9

10

4

10

4

9

3

order reversed

Figure 2: All-adjacency of two pairs of elements

and f�� ��g. By reversing the order of the latter in the disk j (column j in B), the

four elements satisfy the all-adjacency requirement. Note that when two pairs are

placed adjacent to each other, they are as shown in the figure, as opposed to having

a pair being entirely on one side of the other pair. We say that these two pairs are

adjacent and they satisfy the all-adjacency requirement. The following is obvious.

Lemma 1 Given two pairs of elements in A, if they are placed adjacent to each other in

two columns in B, and the order of one or three of the four occurrences of these elements is

reversed, then the pairs satisfy the all-adjacency requirement.

The matrix S contains the positions for each of the c
� pairs. The first column for

the pair f�� �g, the second column for the pair f�� �g, and so on. The matrix F then

indicates which pairs (and at which positions) should have their order reversed.

We first prove that the matrix S, which is generated by Step 1 of the algorithm,

does in fact make every pair adjacent to every other pair in exactly two columns in

B. A number m is consecutive to another number n if jm� nj � �.

Lemma 2 Any two columns in the matrix S have exactly two row positions at which the

element in one column is consecutive to the element in the other column.

8

Proof: The sequence X is mapped to the first column of the matrix S; X rotated to

the left by one position is mapped to the second column of S, and so on. d � � ro-

tations are needed to fill the matrix S. X has the structure as shown in Figure 3, for

even d and odd d, respectively. The dashed lines connect the elements that are con-

even

odd

2 4

53

1

1

2 4

3 5

-2

-1-3

-4

-1-3

-2

d d

dd

d

d d

d

d

d

d

Figure 3: The X sequence

secutive. Consider the even-d case. By rotating the sequence one position to the left

(i.e., anti-clockwise), we move � to �’s previous position, and d � � to d’s previous

position. We refer to the the rotated sequence as X� where the superscript denotes

the number of rotations. Since X andX� correspond to the first and second column

of the matrix S, we have two pairs of elements, f�� �g and fd � �� dg, that are con-

secutive across the two columns. It can be easily seen that because of the structure

of X as shown above, at every rotation, there are two such pairs that are formed;

9

these pairs are as follows.

X� � � � � d� � � d

X� � � � � d� � � d� �

� � � � � � � � �

X
d

� � d
�
 � � d

�
d
� �

d
�
 �

� � � � � � � � �

Xd�� � d� d� � � � �

where i � j means that i in the current rotation has been moved to the position of

j in X , and i and j are consecutive elements.

Similarly, for the odd d case, we have the following.

X� � � � � d� d� �

X� � � � � d� � � d� �

� � � � � � � � �

Xk � k � k
 � k
 � � k
 �

� � � � � � � � �

Xd�� � d� � � d � � �

where k � bd�c. Therefore, for either even d or odd d, there are two pairs of consec-

utive elements across any two columns in the matrix S. �

The two pairs of consecutive numbers across any two columns in S represent

the positions in the two corresponding disks where the two pairs of logical cylin-

ders indexed by the two columns are to be placed. Note that a column in S corre-

sponds to a pair of logical cylinders, whereas a column in B corresponds to a disk.

By Lemma 1, either one or three of these four numbers must be marked to indicate

a reversed order in the placement. We next prove that Step 2 of the algorithm does

exactly this; it marks one of the four numbers in the two consecutive pairs across

the two columns in S.

Lemma 3 By matrix F , the two pairs of consecutive numbers across any two columns in

S have exactly one of the four elements marked.

Proof: Recall k � bd�c.

10

Case 1—d odd, k odd The two pairs of consecutive numbers across any two columns

in S are one of the following.

ff�� �g� fd � �� dgg

ff�� �g� fd � �� d � �gg

� � �

ffk� k
 �g� fk
 �� k
 �gg

Step 2 of the algorithm marks all the odd numbers that are smaller than or

equal k—that is, �� �� � � � � k. Clearly, for any of the above pairs, one of the four

numbers involved is marked.

Case 2—d odd, k even Similar to Case 1.

Case 3—d even The pairs across any two columns in S are

ff�� �g� fd � �� dgg

ff�� �g� fd � �� d � �gg

ff�� �g� f� 	gg

� � �

ffk � �� kg� fk
 �� k
 �gg

ffk� k
 �g� fk
 �� kgg

Step 2 of the algorithm marks the �’s, �’s, � � �, k’s (if k is odd) or (k��)’s (if k is

even) that are in the upper half of the matrix S; and �’s, �’s, � � �, k’s (if k is even)

or (k � �)’s (if k is odd) that are in the lower half of the matrix S. As a result,

for any of the above pairs, one of the four numbers involved is marked. Take

the pairs fp� � f�� �g� p� � fd� �� dgg for instance, if p� is in the upper half of

S, its � will be marked; if p� is in the lower half of S, its � will be marked.

�

Combining the above and considering Step 3 of the algorithm, we have the fol-

lowing.

Theorem 1 Any two columns of the matrixB have two pairs of consecutive elements across

the two columns, and they satisfy the all-adjacency requirement.

11

6 Concluding Remarks

This paper lays the foundation for a new design of shadowed disks. The design fa-

vors systems in which the requests are mostly read requests. Such systems include

digital libraries and all kinds of information servers and data warehouses, many

of which are available over the Internet. We have presented the algorithm that can

generate the necessary information, in terms of a perfect all-adjacency matrix, to be

used for arranging the logical cylinders in the disk array, and proved its correctness.

The method requires, for c cylinders, c
� disks, a number which might not be al-

ways feasible in practice. To use fewer than c
� disks, we can divide the cylinders

into clusters, each consisting of a subset of cylinders, and then the algorithm can be

applied first to clusters, and then to cylinders (or another level of clusters) within

clusters. We give a “2-level” example here. Suppose c � �	 and there are only two

disks available. Two disks can support � cylinders (c � d
�) according to the algo-

rithm. We therefore divide the �	 cylinders into � clusters:

C� � f�� �� �� �g

C� � f� 	� �� �g

C	 � f�� ��� ��� ��g

C� � f��� ��� �� �	g

The matrix B for c � � is as follows.

B �

�
�������

� �

� �

� �

� �

�
�������

The numbers of the matrix B are applied to laying out the clusters in the disks, and

then recursively to cylinders within a cluster. In the latter, a � in B corresponds to

the first element of the cluster, � to the second element, and so on. The result is

shown in Figure 4(a). In this example system, following a write, the two heads will

be positioned at the same cluster in the two disks; to serve the next read operation,

the selected head needs to travel at most a distance of two clusters, or � cylinders. If

the requested cylinder is within the same cluster where the head is positioned, the

12

C1

C2

C4

C3

C1

C2

C3

C4

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

disk 2disk 1

C1

C3

C2

C4

C1

C3

C2

C4

6

7

8

5

10

11

9

14

15

16

13

2

3

4

11

9

10

12

3

1

2

4

7

5

6

8

15

13

14

16

12

1

disk 1 disk 2

(a) new scheme (b) regular scheme

Figure 4: A �	-cylinder, �-disk system

13

seek distance is one cylinder. In general, the seek distance for read is bounded from

above by O� c
�d� for c cylinders and d disks using our method.

Figure 4 also shows a regular shadowed disk system using the same hardware.

A comparison between the two schemes gives the following advantages of the new

scheme over the regular scheme.

	 If either anchoring or confinement is implemented for the new scheme, the

seek distance for any read is bounded by two clusters (for anchoring) or three

clusters (for confinement). The seek distance for read in the regular scheme

can be as long as four clusters.

	 Suppose anchoring or confinement is also implemented for the regular scheme

such that the two heads are bound to the upper two clusters and the lower

two clusters respectively; then the seek distance for read in is reduced to one

cluster (for anchoring) and two clusters (for confinement). However, in ei-

ther case, a write would destroy the anchoring or confinement property. The

new scheme does not have this problem. Also, with anchoring in the regular

scheme, those cylinders that are closer to the heads are favored (seek distance

is shorter); the new scheme is fairer as each new write would potentially move

the heads to a different region of the disks.

Further work includes the study of the write operation. In particular, if a read

request is performed as early as possible without having to wait until all the write

operations triggered by a preceding write request are finished, how much better on

average can a write operation be? It would be worthwhile to compare shadowed

disks using this method and the popular RAID (redundant arrays of inexpensive

disks) systems [3].

References

[1] D. Bitton and J. Gray, “Disk Shadowing”, Proceedings of 14th International Con-

ference on Very Large Databases, 1988, 331–338.

[2] D. Bitton, “Arm Scheduling in Shadowed Disks”, Proceedings of Spring COMP-

CON ’89, 1989, 132–136.

14

[3] G. Gibson and D. Patterson, “RAID: High-Performance, Reliable Secondary

Storage”, ACM Computing Surveys, Vol. 26, No. 2, 1994, 145–185.

[4] R. King, “Disk Arm Movement in Anticipation of Future Requests”, ACM

Transactions on Computer Systems, Vol. 8, No. 3, 1990, 214–229.

[5] R.W.-M. Lo and N.S. Matloff, “A Probabilistic Limit on the Virtual Size of Repli-

cated Disk Systems”, IEEE Transactions on Knowledge and Data Engineering, Vol.

4, No. 1, February 1992, 99–102.

15

