HKU CSIS Tech Report TR-2002-09

An Efficient Algorithm for Incremental Update
of Concept Spaces

Felix Cheung Ben Kao David Cheung C.Y. Ng

Department of Computer Science and Information Systems
The University of Hong Kong
{kmcheung, kao, dcheung, cyng}@csis.hku.hk

Abstract. The vocabulary problem in information retrieval arises be-
cause authors and indexers often use different terms for the same con-
cept. A thesaurus defines mappings between different but related terms.
It is widely used in modern information retrieval systems to solve the
vocabulary problem. Chen et al. proposed the concept space approach to
automatic thesaurus construction. A concept space contains the associ-
ations between every pair of terms. Previous research studies show that
concept space is a useful tool for helping information searchers in revis-
ing their queries in order to get better results from information retrieval
systems. The construction of a concept space, however, is very compu-
tationally intensive. In this paper, we propose and evaluate an efficient
algorithm for the incremental update of concept spaces. In our model,
only strong associations are maintained, since they are most useful in
thesauri construction. Our algorithm uses a pruning technique to avoid
computing weak associations to achieve efficiency.

Keywords: concept space, thesaurus, information retrieval, text mining

1 Introduction

The vocabulary problem has been studied for many years [6,3]. It refers to
the failure of a system caused by the variety of terms used by its users during
human-system communication. Furnes et al. studied the tendency of people using
different terms in describing a similar concept. For example, they discovered that
for spontaneous word choice for concepts, in certain domain, the probability that
two people choose the same term is less than 20% [6]. In an information retrieval
system, if the keywords that a user specifies in his query are not used by the
indexer, the retrieval fails.

To solve the vocabulary problem, a thesaurus is often used. A thesaurus con-
tains a list of terms along with the relationships between them. During search-
ing, a user can make use of the thesaurus to design the most appropriate search
strategy. For example, if a search retrieves too few documents, a user can ex-
pand his query by consulting the thesaurus for similar terms. On the other hand,
if a search retrieves too many documents, a user can use a more specific term
suggested by the thesaurus. Manual construction of thesauri is a very complex

sin
HKU CSIS Tech Report TR-2002-09

process and often involves human experts. Previous research works have been
done on automatic thesaurus construction [5].

In [7], Chen et al. proposed the concept space approach to automatic the-
saurus generation. A concept space is a network of terms and their weighted
associations. The association between two terms is a quantity between 0 and 1,
computed from the co-occurrence of the terms from a given document collection.
Its value represents the strength of similarity between the terms. If two terms
never co-exist in a document, their associations are zero. When the association
from a term a to another term b is close to 1, term a is highly related to term b in
the document collection. Based on the idea of concept space, Schatz et al. con-
structed a prototype system to provide interactive term suggestion to searchers
of the University of Illinois Digital Library Initiative test-bed [8]. Given a term,
the system retrieves all the terms from a concept space that has non-zero associ-
ations to the given term. The associated terms are presented to the user in a list,
sorted in decreasing order of association value. The user then selects new terms
from the list to refine his queries interactively. Schatz showed that users could
make use of the terms suggested by the concept space to improve the recall of
their queries.

The construction of a concept space involves two phases: (1) an automatic
indexing phase in which a document is processed to build inverted lists, and (2)
a co-occurrence analysis phase in which the associations of every term pair are
computed. Since there could be hundreds of thousands of terms in a document
collection, a complete concept space that lists out the association values for all
the term pairs is gigantic. For the purpose of thesaurus construction, fortunately,
most of the association values are not used. Chen et al. suggested that for produc-
tive user-system interaction, only highly relevant concepts should be suggested
to searchers [2]. For example, their worm thesaurus originally has 1,708,551 co-
occurrence pairs and each term has a few thousand associated terms. They used
100 as the maximum number of related concepts for any term. If a term has
more than 100 related terms, only the 100 terms with the highest association
values are retained. They successfully removed about 60% of the less relevant
co-occurrence pairs. In this paper, we call a concept space that only contains
highly-ranked associations a partial concept space.

In a dynamic environment, such as the Web, the collection of documents
on which a concept space is built changes with time. To capture the dynam-
ics, a previously built (partial) concept space needs to be updated accordingly.
The simplest approach to maintaining a concept space is to reconstruct it from
scratch, using the updated set of documents. For large collections, unfortunately,
such a brute force approach is too time-consuming. Our goal is to study the in-
cremental update problem of partial concept spaces. We propose and evaluate an
efficient pruning algorithm that achieves a significant speedup comparing with
the brute-force method.

The rest of the paper is organized as follows. In Section 2 we give a formal def-
inition of concept spaces and the incremental update problem. Section 3 briefly
discusses the brute-force method. Section 4 discusses our pruning algorithm and

its implementation details. Experiment results comparing the performance of
the algorithms are shown in Section 5. Finally, Section 6 concludes the paper.

2 Definitions

A concept space contains the associations, Wj; and Wj,;, between any two terms
j and k found in a document collection. Chen and Lynch [7] define W}, by the
formula:

N

N ..
W x WeightingFactor (k). (1)
> i1 dij
The symbol d;; represents the weight of term j in document i based on the
term-frequency-inverse-document-frequency (TFIDF) measure [1]:

ij =

N
dij = tf ;; ¥ 10%(% X wj),
j

where

tf ;; = number of occurrences of term j in document 4,
df; = number of documents in which term j occurs,
w; = number of words in term j,

N = number of documents.

The symbol d;j;, represents the combined weight of both terms j and & in doc-
ument ¢. It is defined as:

N
dijk = tfijk X log(m X w]-), (2)
J

where

tf ij = number of occurrences of both terms j and k in document 4,

i.e., min(tf,;, tf 1),
dfjr = number of documents in which both terms j and & occur.

Finally, WeightingFactor (k) is defined as:

log(N/df
WeightingFactor (k) = %.

The term WeightingFactor (k) is used as a weighting scheme (similar to the
concept of inverse document frequency) to penalize general terms (terms that
appear in many documents). Terms with a high dfj, value has a small weighting
factor, which results in a small association value. Note that the associations are
asymmetric, that is, Wj;, and Wj; are not necessarily equal. Chen showed that

this asymmetric similarity function (W;;) gives a better association measure
than the popular cosine function [7].

In the following discussion, for simplicity, we assume that w; = 1 for all
j (ie., all terms are single-word ones). We thus remove the term w; from the
formula of di]’ and d”k

As we have mentioned in the introduction, for the purpose of thesaurus con-
struction, only the highly-ranked associations are needed. In particular, given a
term j and a user-specified parameter n, we assume that only the n largest asso-
ciations Wi, , Wig,, ..., Wjp, of j are kept. Such associations are called strong
associations. An association W;; that does not crack into the top n values of j
is called a weak association and is ignored. Setting n = 100, for example, has
shown to be sufficient for some chosen domains [2]. We call the set of all strong
associations a partial concept space.

Given a document collection D, we assume that a partial concept space, CSp
is constructed. Let AD be a set of documents that is added to D to form a new
document collection D', the problem of incremental concept space update is to
compute the partial concept space CSp: with respect to D’ given D and CSp.

For notational convenience, the symbols (e.g., df;;x) that we used in the var-
ious formulae for concept space construction refer to the quantities with respect
to the original document collection D. We use the prime notation (e.g., df;;;.)
to denote those quantities with respect to the updated document collection D’.
Also, a preceding A (e.g., Adf;;,) denotes a quantity with respect to AD. Table

1 summarizes our notations.

Symbol|Description

D |Original document collection

AD |A set of documents added to D

D" |DuUAD

N |the number of documents in D

df; |the number of documents in D that contain term j

tfi; |the number of occurrences of term j in document &

wj |the number words in term j, assumed 1 for simplicity
dfjr |the number of occurrences of both terms j and k in document ¢
tfijx |the number of documents in which both terms j and k occur
Wi |association for the term pair j and k

n |the number of associations that are kept for each term
CSp |the partial concept space of D

Az |a quantity x with respect to AD.

2’ |a quantity x with respect to D’

W |an upper bound of Wjy

W/, |an upper bound of W},
Table 1. Notations

We assume that the size of AD is relatively small compared with that of
D. Tt is thus computationally inexpensive to process AD to obtain the various
“delta” values.

3 Concept Space Construction

Concept space construction is a two-phase process. In the first phase (automatic
indexing), a term-document matrix, TF is constructed. Given a document i
and a term j, the matrix TF returns the term frequency, tf;;. In practice, TF
is implemented using inverted lists. That is, for each term j, a linked list of
[document-id,term-frequency] tuples is maintained. Each tuple records the oc-
currence frequency of term j in the document with the corresponding id. Doc-
uments that do not contain the term j are not included in the inverted list of
j-

Besides the matrix, TF, the automatic indexing phase also calculates the
quantity df; (the number of documents containing term j) as well as Ef\il tfi
(the sum of the term frequency of term j over the whole document collection)
for each term j. These numbers are stored in arrays for fast retrieval during the
second phase (co-occurrence analysis).

In the co-occurrence analysis phase, associations of every term pair are cal-
culated. According to Equation 1 (page 3), to compute Wy, we need to compute
the values of three factors, namely, S | dyj, SIN | dij, and WeightingFactor (k).
Note that

EN)dij:zN)[tfijxlog(>]—log<df> g:tf” 3)

i=1 i=1

Since both df; and Ei\;l tf;; are already computed and stored during the au-

tomatic indexing phase, Zf\il d;; can be computed in constant time. Similarly,
WeightingFactor (k) can be computed in constant time as well.

Computing Zf\il d;jk, however, requires much more work. From Equation 2,
one needs to compute df (i.e., the number of documents containing both terms
jand k) and Y, tf;jx in order to find S°N | diji- Figure 1 shows the algorithm
Weight for computing Wj;. The execution time of Weight is dominated by the
for-loop in line 3. Basically, most of the work is spent on scanning the inverted
lists of terms j and k to determine El diji -

To compute the partial concept space of D', a brute-force approach would be
to compute the associations of all term-pairs. For any term j, the associations
of j are sorted and only the n largest ones (i.e., those that are strong) are
retained. The brute-force method can be made significantly more efficient by
first constructing a two-dimensional triangular bit matrix C' in the automatic
indexing phase. Given two terms j and k, the matrix C' indicates whether j and
k ever co-exist in any documents. We notice that W;k = 0 if j and k£ do not
co-exist in any documents of D’. The function Weight is thus only executed for

WEIGHT(j, k)

1 dfjk- «—0
2 sum-tfijr <0
3 for each (i,tf;;) in the adjacency list of j
4 do
5 if there exists (i,tfir) in the adjacency list of &k
6 then
7 dfjk + dfjr +1
8 if tfij < tfir
9 then
10 sum_tfijk — sum_tfijk + tfij
11 else
12 sum_tfijk — sum_tfijk + tfik
13 sum_dijk «— sum_tfijk X lOg(N/dfjk-)
14 sum_d;; < sum_tfij x log(N/df;)
15 weighting_factor_k < log(N/dfy)/log N
16 return sum_d;jr X weighting_factor_k/sum_d;;

Fig. 1. Function Weight

those j, k pair such that the entry C(j, k) is set. In typical document collections,
matrix C is very sparse. For storage efficiency, the matrix is compressed using
bit-vector compression techniques [4].

4 Pruning Method

The baseline brute-force algorithm is not particularly efficient. It basically com-
putes all possible non-zero associations before filtering out those that are weak.
As an example, we ran the baseline algorithm on a collection of 191,966 docu-
ments. The execution time was 146.5 minutes. The main source of inefficiency
lies in the Weight function, which scans two inverted lists for every non-zero
association. In our collection, there are about 60 millions non-zero associations,
and hence the baseline algorithm performed about 120 millions inverted lists
scanning.

Our approach to a more efficient algorithm for the incremental update prob-
lem is to use an efficient method to compute an upper bound of W]’ . (denoted by
]f ;) using the information of the partial concept space constructed for the old
collection D. We then decide whether the association W]' & 18 a strong association
of term j (w.r.t. D') by comparing the upper bound W]fk with a threshold o;.
The threshold o; is chosen such that if W]fk < 0j, then W]fk cannot be a strong

association; the value W;k is thus not computed. As we will see later in Section
5, this pruning technique significantly reduces the execution time.

Applying the pruning method thus requires two issues be addressed: (1) how
to compute an upper bound @, and (2) how to determine the threshold o; for
a term j. -

To determine an upper bound W]’ > We assume that certain information about
the old collection D is kept. In particular, we assume that for each term j, we
keep two values: df ; and Ei\; tf;;. These values allow us to compute Y oinq dij
and Weightingfactor (k) in constant time (see Equation 3). Also, we assume that
for each weak association Wjj, of term j w.r.t. the old collection D, an upper
bound V/Vj\k is available'. Finally, we assume that the values of strong associations
are kept (in the partial concept space CSp).

Since Wy is an upper bound of W, we have

N
i > i1 ik

ik > Wik = =5 x Weightingfactor (k).
Ei:l dij

Define . N
- Wik X3 i di
= Weightfactor (k)
we have,
N N N
I(jk Z Z dijk = thijk X log(F)
i=1 i=1 Jk
By definition,
P > d;’jk
=
T dy

x WeightingFactor' (k).

Note that
N+ AN
20 = 0t v D 2ha) <)
o log((N + AN)/(dfy, + Adfy))
! —
WeightingFactor' (k) = log(N + AN) ’

(2

N+ AN
diie = tfijk Atfijk) X log(————)-

Assuming that), tf;; and df; are available and that AD is small enough to be
processed to obtain »_; At f;;, Adf; and Adfy,, we can efficiently compute), d;;
and WeightingFactor' (k).

Computing Zid;jk, however, requires scanning inverted lists and thus is
expensive. To compute an upper bound of W]fk efficiently, we must derive an
L If collection D is obtained by adding documents to an even older collection D~

and the partial concept space of D is obtained by applying the pruning algorithm,
then the upper bound m is obtained as a by-product and is kept for the next
incremental update.

efficient method to compute an upper bound of >, d

cases.

Case 1: terms j and k£ do not co-exist in any document of AD.
In this case,) ; Atf,;, and Adfj), are 0. Hence,

Zdljk = thljk x IOg(LA]\[),

i l]k Here, we consider 3

e
I(jk N + AN N

< Tog(Ndfn) (l"g(Nt (dfyk))

o log((N + AN)/N)

= K <1+ log(N/dfs2))

Notice that dfjz is the number of documents in D that contains both terms j
and k, we have df;r < min(df;, dfy) = dfmin. Therefore,

, log((N + AN)/N)
Zi:d“’“ = Ko x <1+ l0g(N/dfmin)) ’
log((N + AN)/df min)

log(N/df min)

= I&'j k

We thus define the upper bound VT/]’\k of W]fk by

K]k y log((N + AN)/df pmin)
El ij IOg(N/dfmin)

Case 2: terms j and k co-exist in documents of D and AD.

Consider the formula for 3, d};; again.

N + AN N+ AN
d. = tf; log(————M—— Atfiin X log(——————
Z ijk Z fisn X Og(dfjk +Adfjk)+zi: Fn Og(dfﬂc + Adfj,

@ = x Weightfactor' (k).

T1 T2

With a derivation similar to that of case 1, we have

N+AN
log(s aary)

lOg(N/dfmin)

For Ts, assume that all the “delta” values can be computed efficiently from AD,
and observe that df;, > 1 for case 2, we have

Ty < I(jk X

N+ AN

T, < ZAtfijk X log(m
ik

i

).

We thus define the upper bound VT/]’\k by

N+AN)

— log(m N + AN Wez'ghtfactor’(k)
W! = Kjp x ———2 773" 4N At fijr x 1o X)

Case 3: terms j and & only co-exist in documents of AD.
In this case, both df;j; and), tfijr are 0. With the “delta” quantities made
available by processing the small AD, the values of >, df;;;, and hence Wj; can

be computed exactly. Thus, we set I/I//J’\k = Wi

Note that in all three cases, the computational cost of determining the upper
bound I/I//J’\k is small, since we do not scan the inverted lists of the large document
collection D.

Recall that, for a term j, our pruning method uses a threshold o; to determine
whether the association W]fk should be computed. In particular, if the upper

bound V/VJ’\k is less than oy, then the association W, must be weak and should
not be computed. To determine o, we compute all n associations W]fki’s for
which Wy, is strong w.r.t the old collection D. o; is then set to the minimum

value of such W, ’s. Given a term k, if @ < oj, we know that W}, must be
smaller than all the n W}, ’s. Hence, W}, must not be strong.

Our pruning algorithm for the incremental update problem then goes as
follows. For a term j, and a strong association W, w.r.t. D, we compute the
association W;kp w.r.t. to the updated collection D’ using the Weight function.
Among the n such associations of term j, we determine the threshold o;. After
that, for any term % such that W}y, is weak w.r.t. D, we compute the upper bound

V/VJf\k of Wj,. If V/VJ’\k is larger than o, W, is computed using the Weight function.
Finally, only the n largest associations of j are kept in the partial concept space
of D'. The upper bounds calculated in the algorithm are also retained for the

next incremental update.

4.1 Quantization

With our pruning method, if the association Wj is weak w.r.t. to D, we have
to determine an upper bound W]’ » of Wi,.. To compute W]fk, we require that an

upper bound I/I//J\k (w.r.t. D) be available?. Since the number of such bounds is
quadratic with respect to the total number of keywords, the amount of storage
required for storing all the Wj;’s is very big. Fortunately, we do not need to
represent the bounds in high precision. Quantization techniques can be applied
so that a bound is represented by a small number of bits.

Let Wy, be the n-th largest association of term j. If W}, is a weak association
in D, we know that I/I//J\k < Wiy, . We divide the interval [0,W}y,] into 16 equal
quantization levels, and W]\k is then rounded up to the nearest level. Each bound
can thus be represented by a 4-bit codeword. We call the modified pruning
method that uses such quantized bounds the common quantization algorithm,
CQA.

Note that the quantization error introduced makes a bound looser than what
it should be. A looser bound would make the pruning less effective. Hence, the

2 WJ’ « is expressed in terms of Kjx, which is in turn expressed in terms of Wjy.

execution time of CQA is expected to be a bit larger than that of the basic
pruning algorithm.

To reduce the quantization error, we can quantize the differences between
bounds instead of their absolute values. Given a term j, we first compute all the
bounds of the weak associations of j. These bounds are then sorted in decreasing
value forming a sequence Wiy, .., Wik, .., ... We put the n-th largest associa-
tion (Wjg,) of j in front of the sequence and compute the differences between
successive values in the sequence as shown below.
ijn _/_,ijn+l _/_,ijn+2 -

Pn+1 Pn+2

The largest difference py,q; is determined and we divide the interval [0,0,,42] into
16 levels. Each difference p; can then be represented by a 4-bit codeword. Know-
ing the value of Wj;, and the differences, all the bounds can be re-computed.
We call this quantization scheme the differential quantization algorithm, DQA.

5 Performance Evaluation

In this section we evaluate the performance of our pruning algorithm and its
variants CQA and DQA. We applied the algorithm on “The Ohsumed Test
Collection” [9], which is a medical document collection. The document collection
consists of 348,566 abstracts with 240,247 terms. The document database is 169
MB large (after stop-word removal and stemming). We ran the algorithms on a
700 MHz Pentium III Xeon machine.

In our experiment, half of the documents are randomly picked as the original
collection D. Collection D contains 174,566 documents. We compute the partial
concept space of D. Also, for any weak association Wj; of D, we compute its
upper bound, V/V;c For the experiment evaluating CQA and DQA, the upper
bounds are quantized according to the quantization schemes described in the last
section. We partition the other half (174,000 documents) into 10 equal parts,
with 17,400 documents apiece. These parts are added to D successively and
cumulatively. The first update thus increases the collection size by 10%, while
the 10th update increases the collection size by about 5%.

Figure 2 shows the runtime of the pruning algorithm (without quantization)
over the 10 updates under different values of n. (Recall that n is the number
of strong associations per term that are kept in a partial concept space.) From
the figure, we see that the execution time is larger when the update number
increases. This is because the collection size is made bigger by the updates.
For example, the collection before the 10th update contains 331,166 documents,
which is about 90% larger than the collection before the 1st update. We see that
the execution time of the pruning algorithm is linearly proportional to the size
of the collection.

Figure 2 also shows that a larger n increases the execution time of the pruning
algorithm. Recall that in the pruning algorithm, for a given term j, we use the n-
th largest association value Wjy, of j as the pruning threshold. A larger n means

10

6000
2500
5000
4500
4000
Runtime(sec) 3500
3000

2500F -

Update

Fig. 2. Runtime of the pruning algorithm over the 10 updates under different values
of n

11

a smaller pruning threshold and thus more associations have to be computed.
This fact is illustrated by Figure 3, which shows the number of associations
computed by the pruning algorithm under different values of n.

Number of
associations
computed

/1,000,000

Update

Fig. 3. The number of associations computed by the pruning algorithm under different
values of n

Figure 4 compares the performance of the 4 algorithms when n is set to 100.
We observe that the pruning algorithm and its quantization variants CQA and
DQA significantly outperform the baseline brute-force approach. This is because
the pruning methods avoid the expensive computation of much of the associa-
tions. Figure 5 compares the number of associations computed by the baseline
algorithm and by the pruning algorithm. From the figure, we see that our pruning
method is very effective in avoiding the computation of weak associations.

From Figure 4, we see that the execution time of CQA is slightly higher
than that of the basic pruning algorithm. This is because the quantization noise
makes the association upper bounds less tight. As we have explained in Section
4, this reduces the pruning effectiveness of CQA. Figure 6 shows the number
of associations computed by the three pruning algorithms. We see that CQA
computes roughly twice as many associations compared with the basic pruning
algorithm and DQA.

12

I I
BASELINE —-O—

20000 B PRUNING ALGORITHM + - n
DQA H—
CQA =X+ =
15000 .
Runtime(sec)
10000 .

5000

Update
Fig. 4. Algorithms’ runtimes over the 10 updates, n = 100

90 |
BASELINE Q—
80 -

PRUNING ALGORITHM - = -

Number of 60

associations 50 —
computed
40 - -

/1,000,000
30 | -

20 |- .

10 - i

Update

Fig. 5. The number of associations computed by the pruning algorithm and the baseline
algorithm

13

7 | | |

PRUNING ALGORITHM —@—
6 — DQA -4 - |
CQA H—

Number of
associations
computed

/1,000,000

Update

Fig. 6. Number of associations computed by the basic pruning algorithm, CQA, and
DQA

By employing differential quantization, quantization errors are made much
smaller in DQA. Figure 6 shows that the pruning effectiveness of DQA is very
close to that of the basic pruning algorithm. The result is that DQA is as efficient
as the basic method.

Another factor that affects the performance of the pruning algorithms is the
size of added documents (AD). In our description of the algorithms, we assume
that AD is small enough such that the time spent in processing AD to obtain the
various “delta” values is acceptable. Figure 7 shows the execution times of the
various algorithms in the first update when |AD| changes from 17,400 to 174,000.
(For reference, |D| = 174,566.) From the figure, we see that the execution time
of the baseline brute-force algorithm increases with |AD|. This is because the
baseline algorithm scans the whole collection (D + AD) to compute association
values. A larger AD means a larger collection and hence more work for the
baseline algorithm. Also, since most of the work done by the pruning algorithms
is on processing AD, we observe a similar increase in execution times for the
pruning algorithms as AD increases.

Finally, we remark that the baseline algorithm is more storage efficient than
the pruning algorithms. Basically, the baseline algorithm only maintains a par-
tial concept space that stores only the strong associations. The basic pruning
method, on the other hand, stores the upper bounds of the weak associations
as well. This storage overhead could be significant. To reduce the storage cost,
CQA and DQA quantize the bounds. In our experiment, the storage requirement
of CQA and DQA ranges from 300MB to 400MB. This is about 1/4 to 1/3 of
the storage required to maintain a full concept space.

14

BASELINE —e—

_PR\'N[NG ALGORITHM + -
DQA -H—

CQA «X 1+ =

20000

15000

Runtime(sec)
10000

5000

20 40 60 8 100 120 140 160

Number of documents added /1000
Fig. 7. Algorithms’ performance vs. |[AD|, n =10

6 Conclusion

This paper studied the problem of incremental update of concept spaces. Previ-
ous studies have shown that the concept space approach to automatic thesaurus
construction is a useful tool for information retrieval. The construction and in-
cremental update of concept spaces, however, are very time consuming. In many
applications, a full concept space is not needed, in particular, only a few strong
associations per keyword are used. We proposed a pruning algorithm for incre-
mental update of concept spaces that contain only strong associations. To reduce
the storage requirement of the pruning algorithm, we propose two quantization
variants, namely, CQA and DQA. Our experiment shows that the pruning algo-
rithms are very effective in avoiding the computation of weak associations. As
an example, if the number of associations to be maintained for each keyword
(i.e., n) is 10, and that the size of the added documents is about 10% of the
original collection, our experiment registered a 9-time speedup of the pruning
algorithms compared with the brute-force approach.

References

1. R. Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval. Addison
Wesley, 1999.

2. H. Chen, T. Yim, D. FYE, and B. SCHATZ. Automatic thesaurus generation for an
electronic community system. Journal of American Society for Information Science,
46(3):175-193, 1995.

3. Hsinchun Chen, Joanne Martinez, Tobun D. Ng, and Bruce R. Schatz. A concept
space approach to addressing the vocabulary problem in scientific information re-

15

trieval: an experiment on the worm community system. Journal of American Society
for information Science, 48(1):17-31, 1997.

. Y. Choueka, A.S. Fraenkel, S.T. Klein, and E. Segal. Improved hierarchical bit-
vector compression in document retrieval systems. In In Proc. 9th ACM-SIGIR
Conference on Information Retrieval, pages 88-97, Pisa, Italy, September 1986.

. W.B. Frakes and R. Baeza-Yates. Information Retreival: Data Structures and Al-
gorithms. Prentice Hall, 1992.

. G.W. Furnas et al. The vocabulary problem in human-system communicaiton.
Comm. ACM, 30(11):964-971, 1987.

. H.Chen and K.J. Lynch. Automatic construction of networks of concepts charac-
terizing document databases. IEEFE Transaction of Systems, Man, and Cybernetics,
22(5):885-902, Sep/Oct 1992.

. B.R. Schatz, E. Johnson, P. Cochrane, and H. Chen. Interactive term suggestion
for users of digital libraries: using subject thesauri and co-occurrence lists for infor-
mation retrieval. In Digital Library 96, Bethesda MD, 1996.

. Hersh WR, Buckley C, Leone TJ, and Hickam DH. Ohsumed: An interac-
tive retrieval evaluation and new large test collection for research. In Pro-
ceedings of the 17th Annual ACM SIGIR Conference, pages 192-201, 1994.
http://wwwl.ics.uci.edu/pub/machine-learning-databases/ohsumed/.

16

